In this paper (Paper I) and a companion paper (Paper II), novel new algorithms and applications of the isokinetic ensemble as generated by Gauss’ principle of least constraint, pioneered for use with molecular dynamics 20 years ago, are presented for biophysical, path integral, and Car–Parrinello based ab initio molecular dynamics. In Paper I, a new “extended system” version of the isokinetic equations of motion that overcomes the ergodicity problems inherent in the standard approach, is developed using a new theory of non-Hamiltonian phase space analysis [M. E. Tuckerman et al., Europhys. Lett. 45, 149 (1999); J. Chem. Phys. 115, 1678 (2001)]. Reversible multiple time step integrations schemes for the isokinetic methods, first presented by Zhang [J. Chem. Phys. 106, 6102 (1997)] are reviewed. Next, holonomic constraints are incorporated into the isokinetic methodology for use in fast efficient biomolecular simulation studies. Model and realistic examples are presented in order to evaluate, critically, the performance of the new isokinetic molecular dynamic schemes. Comparisons are made to the, now standard, canonical dynamics method, Nosé–Hoover chain dynamics [G. J. Martyna et al., J. Chem. Phys. 97, 2635 (1992)]. The new isokinetic techniques are found to yield more efficient sampling than the Nosé–Hoover chain method in both path integral molecular dynamics and biophysical molecular dynamics calculations. In Paper II, the use of isokinetic methods in Car–Parrinello based ab initio molecular dynamics calculations is presented.

1.
F.
Allen
et al.,
IBM Syst. J.
40
,
310
(
2001
).
2.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
3.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
4.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
5.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
6.
M. E.
Tuckerman
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
97
,
2635
(
1992
).
7.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
8.
Y.
Liu
and
M. E.
Tuckerman
,
J. Chem. Phys.
112
,
1685
(
2000
).
9.
S.
Samuelson
,
D. J.
Tobias
, and
G. J.
Martyna
,
J. Phys. Chem. B
101
,
7592
(
1997
).
10.
S.
Samuelson
and
G. J.
Martyna
,
J. Chem. Phys.
109
,
11061
(
1998
).
11.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
12.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
99
,
2796
(
1993
).
13.
G. J.
Martyna
,
A.
Hughes
, and
M. E.
Tuckerman
,
J. Chem. Phys.
110
,
3275
(
1999
).
14.
A. L.
Hughes
,
E.
Balog
, and
G. J.
Martyna
,
J. Chem. Phys.
112
,
870
(
2000
).
15.
D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990).
16.
M. E.
Tuckerman
,
C. J.
Mundy
,
K.
Balasubramanian
,
K.
Bagchi
,
M. L.
Klein
, and
G. J.
Martyna
,
Rev. Comput. Chem.
14
,
291
(
2000
).
17.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
18.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
).
19.
G. J.
Martyna
and
J.
Cao
,
J. Chem. Phys.
104
,
2028
(
1996
).
20.
D.
Marx
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
21.
L.
Rosso
,
P.
Minary
,
Z.
Zhu
, and
M. E.
Tuckerman
,
J. Chem. Phys.
116
,
4389
(
2002
).
22.
W. G.
Hoover
,
A.
Ladd
, and
B.
Moran
,
Phys. Rev. Lett.
48
,
1818
(
1982
).
23.
D. J.
Evans
,
W. G.
Hoover
,
B.
Moran
, and
A. J. C.
Ladd
,
Phys. Rev. A
28
,
1016
(
1983
).
24.
C.
Tsoo
,
D. A.
Estrin
, and
S. J.
Singer
,
J. Chem. Phys.
96
,
7977
(
1992
).
25.
M. E.
Tuckerman
,
C. J.
Mundy
, and
G. J.
Martyna
,
Europhys. Lett.
45
,
149
(
1999
).
26.
M. E.
Tuckerman
,
Y.
Liu
,
G.
Ciccotti
, and
G. J.
Martyna
,
J. Chem. Phys.
115
,
1678
(
2001
).
27.
F.
Zhang
,
J. Chem. Phys.
106
,
6102
(
1997
).
28.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
29.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
30.
J. J.
Biesiadecki
and
R. D.
Skeel
,
J. Comput. Phys.
109
,
318
(
1993
).
31.
E.
Barth
and
T.
Schlick
,
J. Chem. Phys.
109
,
1633
(
1998
).
32.
P. Minary, G. J. Martyna, and M. E. Tuckerman (unpublished).
33.
D. J.
Evans
and
G. P.
Morriss
,
Phys. Lett. A
98
,
433
(
1983
).
34.
D. J.
Evans
and
G. P.
Morriss
,
Chem. Phys.
77
,
63
(
1983
).
35.
D. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).
36.
H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
37.
M.
Creutz
and
A.
Goksch
,
Phys. Rev. Lett.
63
,
9
(
1989
).
38.
M. E.
Tuckerman
,
G. J.
Martyna
, and
B. J.
Berne
,
J. Chem. Phys.
97
,
1990
(
1992
).
39.
M. P. Calvo and J. M. Sanz-Sarna, Numerical Hamiltonian Problems (Chapman & Hall, London, 1994).
40.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
41.
M.
Suzuki
,
J. Math. Phys.
26
,
601
(
1985
).
42.
H.
Grubmuller
,
H.
Heller
,
A.
Windemeth
, and
K.
Schulten
,
Mol. Simul.
6
,
121
(
1991
).
43.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
44.
A.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
et al.,
J. Phys. Chem. B
102
,
3586
(
1998
).
45.
G.
Ciccotti
and
J. P.
Ryckaert
,
Comput. Phys. Rep.
3
,
345
(
1986
).
46.
B.
Chen
,
M. G.
Martin
, and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2578
(
1998
).
47.
M.
Fixman
,
Proc. Natl. Acad. Sci. U.S.A.
71
,
3050
(
1970
).
48.
L.
Verlet
,
Phys. Rev.
165
,
201
(
1968
).
49.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
50.
H.
Xu
and
B. J.
Berne
,
J. Chem. Phys.
110
,
10299
(
1999
).
51.
R. P. Feynman, Statistical Mechanics (Benjamin, Reading, 1972).
52.
M. F.
Herman
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
76
,
5150
(
1982
).
53.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
91
,
6359
(
1989
).
54.
Z.
Zhu
,
M. E.
Tuckerman
,
S. O.
Samuelson
, and
G. J.
Martyna
,
Phys. Rev. Lett.
88
,
100201
(
2002
).
55.
J. S. Fruton, Advances in Enzymology (Wiley, New York, 1976), Vol. 44, pp. 1–36.
56.
J. R. Collins, S. K. Burt, and J. W. Erickson, Aspartic Proteinases: Structure, Function, Biology, and Biomedical Implications (Plenum, New York, 1995), pp. 455–460.
57.
R.
Ishima
,
D. I.
Freedberg
,
Y. X.
Wang
,
J. M.
Louis
, and
D. A.
Torchia
,
Structure with Folding and Design
7
,
1047
(
1999
).
58.
Z. Zhu, D. I. Schuster, and M. E. Tuckerman, Biochemistry (in press).
59.
S.
Spinelli
,
Q. Z.
Liu
, and
P. M.
Alzari
,
Biochimie
73
,
1391
(
1991
).
60.
M. E.
Tuckerman
,
D. A.
Yarne
,
S. O.
Samuelson
,
A. L.
Hughes
, and
G. J.
Martyna
,
Comput. Phys. Commun.
128
,
333
(
2000
).
61.
M. E.
Tuckerman
and
M.
Parrinello
,
J. Chem. Phys.
101
,
1302
(
1994
).
62.
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
63.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Phys.
104
,
5579
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.