A strategy for finding transition paths connecting two stable basins is presented. The starting point is the Hamilton principle of stationary action; we show how it can be transformed into a minimum principle through the addition of suitable constraints like energy conservation. Methods for improving the quality of the paths are presented: for example, the Maupertuis principle can be used for determining the transition time of the trajectory and for coming closer to the desired dynamic path. A saddle point algorithm (conjugate residual method) is shown to be efficient for reaching a “true” solution of the original variational problem.

1.
D. Chandler, in Computer Simulation of Rare Events and Dynamics of Classical and Quantum Condensed-Phase Systems-Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), pp. 3–23.
2.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
3.
H.
Grubmüller
,
Phys. Rev. E
52
,
2893
(
1995
).
4.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
5.
A. F.
Voter
,
Phys. Rev. B
57
,
R13
985
(
1998
).
6.
M. R.
Sorensen
and
A. F.
Voter
,
J. Chem. Phys.
112
,
9599
(
2000
).
7.
J. A.
Rahman
and
J. C.
Tully
,
J. Chem. Phys.
116
,
8750
(
2002
).
8.
K. A.
Feenstra
,
B.
Hess
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
20
,
786
(
1999
).
9.
L. A.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
).
10.
C.
Dellago
,
P.
Bolhuis
,
F.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
11.
C.
Dellago
,
P.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
12.
P. L.
Geissler
,
C.
Dellago
,
D.
Chandler
,
J.
Hutter
, and
M.
Parrinello
,
Science
291
,
2121
(
2001
).
13.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
5877
(
2000
).
14.
H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 385.
15.
L. D. Landau and L. Lifshitz, Mechanics (Pergamon, New York, 1958).
16.
H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison-Wesley, New York, 2002).
17.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1982).
18.
A. E.
Cho
,
J. D.
Doll
, and
D. L.
Freeman
,
Chem. Phys. Lett.
229
,
218
(
1994
).
19.
R.
Olender
and
R.
Elber
,
J. Chem. Phys.
105
,
9299
(
1996
).
20.
R.
Elber
,
A.
Ghosh
, and
R.
Cardenas
,
Acc. Chem. Res.
35
,
396
(
2002
).
21.
Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, 1996).
22.
D.
Passerone
and
M.
Parrinello
,
Phys. Rev. Lett.
87
,
108302
(
2001
).
23.
See, e.g., E. T. Whittaker, Analytical Dynamics, 4th ed. (Cambridge University Press, Cambridge, England, 1964).
24.
R. E.
Gillilan
and
K. R.
Wilson
,
J. Chem. Phys.
97
,
1757
(
1992
).
25.
D. Passerone (unpublished).
26.
See, e.g.,
G. V.
Mil’nikov
and
H.
Nakamura
,
J. Chem. Phys.
115
,
6881
(
2001
).
27.
R.
Czerminski
and
R.
Elber
,
Int. J. Quantum Chem.
24
,
167
(
1990
).
28.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98 Revision A.11.1, Gaussian, Inc., Pittsburgh, PA, 2001.
29.
P.
Procacci
,
T. A.
Darden
,
E.
Paci
, and
M.
Marchi
,
J. Comput. Chem.
18
,
1848
(
1997
).
30.
FFTW library code by Matteo Frigo and Steven G. Johnson.
31.
J.
Apostolakis
,
P.
Ferrara
, and
A.
Caflisch
,
J. Chem. Phys.
110
,
2099
(
1999
).
32.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
(
1998
).
33.
S. J.
Weiner
,
P. A.
Kollman
,
D. A.
Case
,
U. C.
Singh
,
C.
Ghio
,
G.
Alagona
,
S.
Profeta
, and
P.
Weiner
,
J. Am. Chem. Soc.
106
,
765
(
1984
).
34.
T.
Komatsutaki
and
R. S.
Berry
,
Adv. Chem. Phys.
123
,
79
(
2002
) and references therein.
This content is only available via PDF.
You do not currently have access to this content.