We have tested the performance of four-component relativistic density functional theory (DFT) by calculating spectroscopic constants (re,ωe, and ωexe) and dipole moments μ0 in the vibrational ground state for a selected set of 14 molecules: the hydrogen halides HX, the dihalogens X2, as well as the interhalogens XY (X,Y=F, Cl, Br, and I). These molecules have previously been studied by four-component relativistic wave function based methods by Visscher and co-workers [J. Chem. Phys. 108, 5177 (1998); 104, 9040 (1996); 105, 1987 (1996)]. We have used four different nonrelativistic functionals at the DZ and TZ basis set level. What is perhaps the most striking result of our study is the overall good performance of the local density approximation functional SVWN5; at the triple zeta basis set level it predicts bond lengths re, harmonic frequencies ωe, anharmonicities ωexe, and dipole moments μ0 with relative errors of 0.46%, 0.39%, −16.3%, and −0.74%, respectively. The corresponding values for the B3LYP hybrid functional are 1.27%, −2.10%, −20.4%, and 4.71%. The two generalized gradient approximation functionals PW86 and BLYP show a less convincing performance, characterized by a systematic overestimation of bond lengths and underestimation of harmonic frequencies. We show that only the constant term is modified in second-order vibrational perturbation theory upon the inclusion of a linear term, corresponding to the choice of a nonstationary reference geometry. Upon shifting the reference geometry from the optimized to the experimental geometry the calculated harmonic frequencies are significantly improved, whereas the anharmonicities are basically unchanged. Dipole moments calculated at the experimental geometry at the B3LYP/TZ level appear to be remarkably accurate with a mean relative error of −1.1% and a standard deviation of less than 4%. Our study reveals that anharmonicities are quite sensitive to the numerical integration scheme employed in the DFT calculations, and for the interhalogens we had to modify the Becke partitioning scheme by using atomic adjustments along the lines of the atom in molecules approach of Bader.

1.
W. A.
de Jong
,
J.
Styszynski
,
L.
Visscher
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
108
,
5177
(
1998
).
2.
L.
Visscher
and
K. G.
Dyall
,
J. Chem. Phys.
104
,
9040
(
1996
).
3.
L.
Visscher
,
J.
Styszyñski
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
105
,
1987
(
1996
).
4.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
5.
J. A.
Pople
,
Rev. Mod. Phys.
71
,
1267
(
1999
).
6.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
7.
A. K.
Wilson
,
D. E.
Woon
, and
K. A.
Peterson
,
J. Chem. Phys.
110
,
7667
(
1999
).
8.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
9.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
10.
W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000).
11.
W.
Kohn
,
Rev. Mod. Phys.
71
,
1253
(
1999
).
12.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
13.
P. M. W.
Gill
,
Aust. J. Chem.
54
,
661
(
2001
).
14.
P.
Pyykkö
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
15.
M. Dolg, in Relativistic Electronic Structure Theory—Part 1. Fundamentals, edited by P. Schwerdtfeger (Elsevier, Amsterdam, 2002), p. 523.
16.
L. Seijo and Z. Barandiarán, in Computational Chemistry, Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 1999), Vol. 4, p. 55.
17.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
1974
,
89
(
1974
).
18.
B. A.
Hess
,
Phys. Rev. A
32
,
756
(
1985
).
19.
B. A.
Hess
,
Phys. Rev. A
33
,
3742
(
1986
).
20.
M.
Barysz
and
A.
Sadlej
,
J. Mol. Struct.: THEOCHEM
573
,
181
(
2001
).
21.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
22.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
23.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
24.
DIRAC, a relativistic ab initio electronic structure program, Release 3.2 (2000), written by T. Saue, V. Bakken, T. Enevoldsen, T. Helgaker, H. J. Aa. Jensen, J. K. Laerdahl, K. Ruud, J. Thyssen, and L. Visscher (http://dirac.chem.sdu.dk).
25.
K.
Faegri
,
Theor. Chem. Acc.
105
,
252
(
2001
).
26.
T.
Saue
,
K.
Fægri
, and
O.
Gropen
,
Chem. Phys. Lett.
263
,
360
(
1996
).
27.
P.
Norman
,
B.
Schimmelpfeniig
,
K.
Ruud
,
H. J. Aa.
Jensen
, and
H.
Ågren
,
J. Chem. Phys.
116
,
6914
(
2002
).
28.
NIST Chemistry WebBooik, http://webbook.nist.gov/chemistry/
29.
Handbook of Chemistry and Physics, 80th edition, edited by D. R. Lide (CRC, Boca Raton, FL, 1999).
30.
A.
Durand
,
J. C.
Loison
, and
J.
Vigué
J. Chem. Phys.
106
,
477
(
1997
).
31.
E.
Herbst
and
W.
Steinmetz
,
J. Chem. Phys.
56
,
5342
(
1972
).
32.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
33.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
,
Chem. Phys. Lett.
290
,
473
(
1998
).
34.
L.
Visscher
,
T.
Saue
,
W. C.
Nieuwpoort
,
K.
Fægri
, and
O.
Gropen
,
J. Chem. Phys.
99
,
6704
(
1993
).
35.
O.
Visser
,
L.
Visscher
,
P. J. C.
Aerts
, and
W. C.
Nieuwpoort
,
Theor. Chim. Acta
81
,
405
(
1992
).
36.
R. E. Moss, Advanced Molecular Quantum Mechanics (Chapmann and Hall, London, 1973).
37.
J.-M.
Lévy-Leblond
,
Commun. Math. Phys.
6
,
286
(
1967
).
38.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
39.
E. Engel, in Relativistic Electronic Structure Theory—Part 1. Fundamentals, edited by P. Schwerdtfeger (Elsevier, Amsterdam, 2002), p. 523.
40.
E.
Engel
and
R. M.
Dreizler
,
Top. Curr. Chem.
181
,
1
(
1996
).
41.
E. Engel, H. Müller, C. Speicher, and R. M. Dreizler, in Density Functional Theory, edited by E. K. U. Gross and R. M. Dreizler [NATO, Adv. Study Inst. Ser. Ser. B 337, 65 (1995)].
42.
M. V.
Ramana
and
A. K.
Rajagopal
,
Adv. Chem. Phys.
54
,
231
(
1983
).
43.
W. J.
Liu
and
R.
Franke
,
J. Comput. Chem.
23
,
564
(
2002
).
44.
V.
Pershina
,
T.
Bastug
,
B.
Fricke
, and
S.
Varga
,
J. Chem. Phys.
115
,
792
(
2001
).
45.
T.
Yanai
,
H.
Iikura
,
T.
Nakajima
,
Y.
Ishikawa
, and
K.
Hirao
,
J. Chem. Phys.
115
,
8267
(
2001
).
46.
M.
Mayer
,
O. D.
Häberlen
, and
N.
Rösch
,
Phys. Rev. A
54
,
4775
(
1996
).
47.
S.
Varga
,
E.
Engel
,
W.-D.
Sepp
, and
B.
Fricke
,
Phys. Rev. A
59
,
4288
(
1999
).
48.
J. P. Perdew and K. Schmidt, in Density Functional Theory and its Applications to Materials, edited by V. E. Van Doren, K. Van Alsenoy, and P. Geerlings (American Institute of Physics, New York, 2001).
49.
P. A. M.
Dirac
,
Proc. R. Soc. London
26
,
376
(
1930
).
50.
S. J.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
51.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
52.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
.
Phys. Rev. B
37
,
758
(
1988
).
53.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
54.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
55.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
56.
CADPACK: The Cambridge Analytical Derivative Package Issue 6, Cambridge 1995. A suite of quantum chemistry programs developed by R. D. Amos with contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell et al.
57.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
58.
R.
Lindh
,
P. A.
Malmqvist
, and
L.
Galgiardi
,
Theor. Chem. Acc.
106
,
178
(
2001
).
59.
C. van Wüllen (private communication); see also http://server.ccl.net/cgi-bin/ccl/message.cgi?2000+03+03+003+raw
60.
T.
Saue
and
H. J. Aa
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
61.
T. Saue and H. J. Aa. Jensen, in Mathematical Methods for Ab Initio Quantum Chemistry, Lecture Notes in Chemistry, Vol. 74, edited by M. Defrancheschi and C. Le Bris (Springer, Berlin, 2000), p. 227.
62.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
63.
T.
Saue
,
K.
Fægri
,
T.
Helgaker
, and
O.
Gropen
,
Mol. Phys.
91
,
937
(
1997
).
64.
P.
Pulay
,
Chem. Phys. Lett.
73
,
393
(
1980
).
65.
A.
Schäfer
,
J.
Huber
, and
R.
Alrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
66.
K. Fægri, Jr. (unpublished); available upon request. See also http://folk.uio.no/knutf/
67.
A.
Stromberg
,
O.
Gropen
, and
U.
Wahlgren
,
J. Comput. Chem.
4
,
181
(
1983
).
68.
K. G.
Dyall
and
K.
Fægri
,
Theor. Chim. Acta
94
,
39
(
1996
).
69.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
,
Comput. Phys. Commun.
55
,
425
(
1989
).
70.
R. H.
Schwendeman
,
J. Chem. Phys.
44
,
2115
(
1966
).
71.
J. F. Ogilvie, The Vibrational and Rotational Spectrometry of Diatomic Molecules (Academic, San Diego, 1998).
72.
P.-O.
Åstrand
,
K.
Ruud
, and
D.
Sundholm
,
Theor. Chem. Acc.
103
,
365
(
2000
).
73.
Q.
Zhang
,
P. N.
Day
, and
D. G.
Truhlar
,
J. Chem. Phys.
98
,
4948
(
1993
).
74.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
75.
T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, Chichester, 2000).
76.
K.
Jankowski
,
R.
Becherer
,
P.
Scharf
,
H.
Schiffer
, and
R.
Ahlrichs
,
J. Chem. Phys.
82
,
1413
(
1985
).
77.
K. S.
Raymond
and
R. A.
Wheeler
,
J. Comput. Chem.
20
,
207
(
1999
).
78.
A. C.
Scheiner
,
J.
Baker
, and
J. W.
Andzelm
,
J. Comput. Chem.
18
,
775
(
1997
).
79.
W. A.
de Jong
,
L.
Visscher
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
,
107
,
9046
(
1997
).
80.
G. Frenking and T. Wagener, in Encyclopedia of Computational Chemistry, edited by P. v R. Schleyer (Wiley, Chichester, 1998).
81.
R. H.
Hertwig
and
W.
Koch
,
J. Comput. Chem.
16
,
576
(
1995
).
82.
J. C.
Slater
,
J. Chem. Phys.
41
,
3199
(
1964
).
83.
R. F. W.
Bader
,
Chem. Rev.
91
,
893
(
1991
).
84.
K. L.
Bak
,
J.
Gauss
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
319
,
563
(
2000
).
85.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
l98
,
2983
(
1993
)
86.
P. Pulay, in Applications of Electronic Structure Theory, Modern Theoretical Chemistry, edited by H. Schaefer III (Plenum, New York, 1977), p. 153.
87.
P.
Hassanzedeh
and
K. K.
Irikura
,
J. Comput. Chem.
19
,
1315
(
1998
).
88.
P. E.
Maslen
,
D.
Jayatilaka
,
S. M.
Colwell
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
95
,
7409
(
1991
).
89.
D.
Michalska
,
L. J.
Schaad
,
P.
C̆ársky
,
B. A.
Hess
, and
C. S.
Ewig
,
J. Comput. Chem.
9
,
495
(
1988
).
90.
F. A. V.
Dijk
and
A.
Dymanus
,
Chem. Phys. Lett.
5
,
387
(
1970
).
91.
G.
Maroulis
,
Chem. Phys. Lett.
318
,
181
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.