Benchmark calculations of C13 nuclear magnetic shielding constants are performed for a set of 16 molecules. It is demonstrated that near-quantitative accuracy (∼1–2 ppm deviation from experiment) can be achieved if (1) electron correlation is adequately treated by employing the coupled-cluster singles and doubles (CCSD) model augmented by perturbative corrections for triple excitations [CCSD(T)], (2) large (uncontracted) basis sets are used, (3) calculations are performed at accurate equilibrium geometries (obtained from CCSD(T)/cc-pVTZ or CCSD(T)/cc-pVQZ calculations), and (4) vibrational averaging is included. In this way [CCSD(T)/13s9p4d3f calculations corrected for vibrational effects], the mean deviation and standard deviation from experiment are 1.6 and 0.8 ppm, respectively. Less complete theoretical treatments result in larger errors. Consideration of relative shifts might reduce the mean deviation (through an appropriately chosen reference compound), but cannot change the standard deviation. Density-functional theory calculations of nuclear magnetic shielding constants are found to be less accurate, intermediate between Hartree–Fock self-consistent-field and second-order Møller–Plesset perturbation theory.

1.
W. Kutzelnigg, U. Fleischer, and M. Schindler, in NMR Basic Principles and Progress edited by P. Diehl, E. Fluck, H. Günther, R. Kosfeld, and J. Seelig (Springer, Berlin, 1990), Vol. 23, p. 165.
2.
D.
Cremer
,
L.
Olsson
,
F.
Reichel
, and
E.
Kraka
,
Isr. J. Chem.
33
,
369
(
1993
).
3.
J.
Gauss
,
Ber. Bunsenges. Phys. Chem.
99
,
1001
(
1995
).
4.
P. Pulay and J.F. Hinton, in Encyclopedia of Nuclear Magnetic Resonance, edited by D.M. Frant and R.K. Harris (Wiley, Chichester, 1996), Vol.7, p. 4334.
5.
J.C. Facelli, in Ref. 4, p. 4327.
6.
D.B. Chesnut, in Reviews in Computational Chemistry, edited by K.B. Lipkowitz and D.B. Boyd (VCH, New York, 1996), p. 245.
7.
U. Fleischer, W. Kutzelnigg, and C. v. Wüllen, in Encyclopedia of Computational Chemistry, edited by P.v.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H.F. Schaefer, and P.R. Schreiner (Wiley, Chichester, 1998), p. 1827.
8.
M. Bühl, in Ref. 7, p. 1835.
9.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
10.
J.
Gauss
and
J.F.
Stanton
,
Adv. Chem. Phys.
123
,
355
(
2002
).
11.
C.
Klemp
,
M.
Bruns
,
J.
Gauss
,
U.
Häussermann
,
G.
Stößer
,
L. v.
Wüllen
,
M.
Jansen
, and
H.
Schnöckel
,
J. Am. Chem. Soc.
123
,
9099
(
2001
).
12.
C.
Ochsenfeld
,
S.P.
Brown
,
I.
Schnell
,
J.
Gauss
, and
H.W.
Spiess
,
J. Am. Chem. Soc.
123
,
2597
(
2001
).
13.
S.P.
Brown
,
T.
Schaller
,
U.P.
Seelbach
,
F.
Koziol
,
C.
Ochsenfeld
,
F.-G.
Klärner
, and
H.W.
Spiess
,
Angew. Chem., Int. Ed. Engl.
40
,
717
(
2001
).
14.
H.-U. Siehl, T. Müller, and J. Gauss, J. Phys. Org. Chem. (to be published).
15.
D.R.
Price
and
J.F.
Stanton
,
Org. Lett.
4
,
2809
(
2002
).
16.
J.
Gauss
,
Chem. Phys. Lett.
191
,
614
(
1992
).
17.
J.
Gauss
,
J. Chem. Phys.
99
,
3629
(
1993
).
18.
M.
Bühl
,
J.
Gauss
,
M.
Hofmann
, and
P.v.R.
Schleyer
,
J. Am. Chem. Soc.
115
,
12385
(
1993
).
19.
P.v.R.
Schleyer
,
J.
Gauss
,
M.
Bühl
,
R.
Greatrex
, and
M.
Fox
,
J. Chem. Soc., Chem. Commun.
1993
,
20.
S.
Sieber
,
P.v.R.
Schleyer
, and
J.
Gauss
,
J. Am. Chem. Soc.
115
,
6987
(
1993
).
21.
P.
Buzek
,
P.v.R.
Schleyer
,
H.
Vancik
,
Z.
Mihalic
, and
J.
Gauss
,
Angew. Chem.
104
,
470
(
1994
).
22.
H.-U.
Siehl
,
T.
Müller
,
J.
Gauss
,
P.
Buzek
, and
P.v.R.
Schleyer
,
J. Am. Chem. Soc.
116
,
6384
(
1994
).
23.
J.F.
Stanton
,
J.
Gauss
, and
H.-U.
Siehl
,
Chem. Phys. Lett.
262
,
183
(
1996
).
24.
D.
Sundholm
,
J.
Gauss
, and
A.
Schäfer
,
J. Chem. Phys.
105
,
11051
(
1996
).
25.
J.
Gauss
and
J.F.
Stanton
,
J. Chem. Phys.
104
,
2574
(
1996
).
26.
G.
Magyarfalvi
and
P.
Pulay
,
Chem. Phys. Lett.
225
,
280
(
1994
);
M.
Bühl
,
W.
Thiel
,
U.
Fleischer
, and
W.
Kutzelnigg
,
J. Phys. Chem.
99
,
4000
(
1995
);
M.
Bühl
,
J.
Gauss
, and
J.F.
Stanton
,
Chem. Phys. Lett.
241
,
248
(
1995
).
27.
C.v.
Wüllen
and
W.
Kutzelnigg
,
J. Chem. Phys.
104
,
2330
(
1996
).
28.
M.
Jaszuński
,
T.
Helgaker
,
K.
Ruud
,
K.L.
Bak
, and
P.
Jørgensen
,
Chem. Phys. Lett.
220
,
154
(
1994
).
29.
K.
Christe
,
W.W.
Wilson
,
J.A.
Sheehy
, and
J.A.
Boatz
,
Angew. Chem., Int. Ed. Engl.
38
,
2004
(
1999
);
the GIAO-CCSD(T) calculations reported in this reference have been carried out by J.F. Stanton (unpublished results).
30.
A. Wu, D. Cremer, and J. Gauss, J. Phys. Chem. A (to be published).
31.
J.
Gauss
,
Chem. Phys. Lett.
229
,
198
(
1994
).
32.
J.
Oddershede
and
J.
Geertsen
,
J. Chem. Phys.
92
,
6036
(
1990
).
33.
T.D.
Bouman
and
A.E.
Hansen
,
Chem. Phys. Lett.
175
,
292
(
1990
).
34.
A.
Ligabue
,
S.P.A.
Sauer
, and
P.
Lazzeretti
,
J. Chem. Phys.
118
,
6830
(
2003
).
35.
J.
Gauss
and
J.F.
Stanton
,
J. Chem. Phys.
102
,
251
(
1995
).
36.
J.
Gauss
and
J.F.
Stanton
,
J. Chem. Phys.
103
,
3561
(
1995
).
37.
J.
Gauss
and
J.F.
Stanton
,
Phys. Chem. Chem. Phys.
2
,
2047
(
2000
).
38.
J.
Gauss
,
J. Chem. Phys.
116
,
4773
(
2002
).
39.
C.v.
Wüllen
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
205
,
563
(
1993
).
40.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jørgensen
,
K.L.
Bak
, and
H.J.Aa.
Jensen
,
J. Chem. Phys.
100
,
8178
(
1994
).
41.
V.G.
Malkin
,
O.L.
Malkina
, and
D.R.
Salahub
,
Chem. Phys. Lett.
221
,
91
(
1994
).
42.
V.G.
Malkin
,
O.L.
Malkina
,
M.E.
Casida
, and
D.R.
Salahub
,
J. Am. Chem. Soc.
116
,
5898
(
1994
).
43.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem.
99
,
606
(
1995
).
44.
G.
Rauhut
,
S.
Puyear
,
K.
Wolinski
, and
P.
Pulay
,
J. Phys. Chem.
100
,
6310
(
1996
).
45.
J.R.
Cheeseman
,
G.W.
Trucks
,
T.A.
Keith
, and
M.J.
Frisch
,
J. Chem. Phys.
104
,
5497
(
1996
).
46.
L.
Olsson
and
D.
Cremer
,
J. Chem. Phys.
105
,
8995
(
1996
).
47.
G.
Vignale
,
M.
Rasolt
, and
D.J.W.
Geldard
,
Adv. Quantum Chem.
21
,
235
(
1990
).
48.
A.M.
Lee
,
N.C.
Handy
, and
S.M.
Colwell
,
J. Chem. Phys.
103
,
10095
(
1995
).
49.
A detailed discussion of the gauge problem can be found, for example, in
W.
Kutzelnigg
,
J. Mol. Struct.: THEOCHEM
202
,
11
(
1989
) as well as in Ref. 10.
50.
W.
Kutzelnigg
,
Isr. J. Chem.
19
,
193
(
1980
).
51.
M.
Schindler
and
W.
Kutzelnigg
,
J. Chem. Phys.
76
,
1919
(
1982
).
52.
A.E.
Hansen
and
T.D.
Bouman
,
J. Chem. Phys.
82
,
5035
(
1985
).
53.
T.A.
Keith
and
R.W.F.
Bader
,
Chem. Phys. Lett.
210
,
223
(
1993
).
54.
F.
London
,
J. Phys. Radium
8
,
397
(
1937
).
55.
H.
Hameka
,
Mol. Phys.
1
,
203
(
1958
);
H.
Hameka
,
Z. Naturforsch. A
14
,
599
(
1959
).
56.
R.
Ditchfield
,
J. Chem. Phys.
56
,
5688
(
1972
);
R.
Ditchfield
,
Mol. Phys.
27
,
789
(
1974
).
57.
K.
Wolinski
,
J.F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
58.
T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, Chichester, 2001).
59.
J.
Olsen
,
A.M.
Sanchez de Meras
,
H.J.Aa.
Jensen
, and
P.
Jørgensen
,
Chem. Phys. Lett.
154
,
380
(
1989
).
60.
A.
Halkier
,
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
110
,
734
(
1999
).
61.
H.
Larsen
,
J.
Olsen
,
C.
Hättig
,
P.
Jørgensen
,
O.
Christiansen
, and
J.
Gauss
,
J. Chem. Phys.
111
,
1917
(
1999
).
62.
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
J.
Gauss
,
Chem. Phys. Lett.
342
,
200
(
2001
).
63.
J.
Gauss
and
K.
Ruud
,
Int. J. Quantum Chem., Quantum Chem. Symp.
29
,
437
(
1995
).
64.
A.A.
Auer
,
J.
Gauss
, and
M.
Pecul
,
Chem. Phys. Lett.
368
,
172
(
2003
).
65.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
66.
A.
Halkier
,
P.
Jørgensen
,
J.
Gauss
, and
T.
Helgaker
,
Chem. Phys. Lett.
274
,
235
(
1997
).
67.
K.L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J.F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
68.
K.L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J.
Gauss
,
Chem. Phys. Lett.
317
,
116
(
2000
).
69.
D.
Sundholm
,
J.
Gauss
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
243
,
264
(
1995
).
70.
A.K.
Jameson
and
C.J.
Jameson
,
Chem. Phys. Lett.
134
,
461
(
1987
).
71.
C.J.
Jameson
,
A.
de Dios
, and
A.K.
Jameson
,
Chem. Phys. Lett.
167
,
575
(
1990
).
72.
C.J.
Jameson
and
A.K.
Jameson
,
Chem. Phys. Lett.
149
,
300
(
1988
).
73.
R.E.
Wasylishen
,
S.
Mooibroek
, and
J.B.
Macdonald
,
J. Chem. Phys.
81
,
1057
(
1984
).
74.
K.
Jackowski
,
J. Mol. Struct.
563
,
159
(
2001
).
75.
C.J.
Jameson
,
A.K.
Jameson
, and
P.M.
Burrell
,
J. Chem. Phys.
73
,
6013
(
1980
);
C.J.
Jameson
,
A.K.
Jameson
, and
J.
Honarbakhsh
,
J. Chem. Phys.
81
,
5266
(
1984
).
76.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
298
,
113
(
1998
).
77.
P.-O.
Åstrand
and
K.V.
Mikkelsen
,
J. Chem. Phys.
104
,
648
(
1996
).
78.
J.
Vaara
,
J.
Lounila
,
K.
Ruud
, and
T.
Helgaker
,
J. Chem. Phys.
109
,
8388
(
1998
).
79.
R.D.
Wigglesworth
,
W.T.
Raynes
,
S.P.A.
Sauer
, and
J.
Oddershede
,
Mol. Phys.
96
,
1595
(
1999
).
80.
R.D.
Wigglesworth
,
W.T.
Raynes
,
S.
Kirpekar
,
J.
Oddershede
, and
S.P.A.
Sauer
,
J. Chem. Phys.
112
,
736
(
2000
).
81.
M.C.
Böhm
,
J.
Schulte
, and
R.
Ramirez
,
Chem. Phys. Lett.
332
,
117
(
2000
).
82.
K.
Ruud
,
P.-O.
Åstrand
, and
P.R.
Taylor
,
J. Am. Chem. Soc.
123
,
4826
(
2001
).
83.
K.
Raghavachari
,
G.W.
Trucks
,
M.
Head-Gordon
, and
J.A.
Pople
,
Chem. Phys. Lett.
157
,
479
(
1989
).
84.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
85.
See, for example,
M.
Bühl
and
P.v.R.
Schleyer
,
J. Am. Chem. Soc.
114
,
477
(
1992
);
D.
Cremer
,
F.
Reichel
, and
E.
Kraka
,
J. Am. Chem. Soc.
113
,
9459
(
1991
) as well as the discussions in Refs. 8 and 2.
86.
J.F.
Stanton
and
J.
Gauss
,
Int. Rev. Phys. Chem.
19
,
61
(
2000
).
87.
A.D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
J.P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
88.
A.D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
89.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
90.
T.H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
91.
I.M. Mills, in Molecular Spectroscopy: Modern Research, edited by K.N. Rao and C.W. Matthews (Academic, New York, 1972), p. 115.
92.
Note that this statement is based on the usual perturbational treatment for the expectation values of products of Qr,Qs, … as well as the fact that the nth derivative of the shielding tensor is considered to be of nth order.
93.
J.F.
Stanton
,
C.L.
Lopreore
, and
J.
Gauss
,
J. Chem. Phys.
108
,
7190
(
1998
).
94.
J.F.
Stanton
,
J.
Gauss
,
J.D.
Watts
,
W.J.
Lauderdale
, and
R.J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
).
95.
The corresponding module in TURBOMOLE for computing chemical shifts has been described in
M.
Häser
,
R.
Ahlrichs
,
H.P.
Baron
,
P.
Weis
, and
H.
Horn
,
Theor. Chim. Acta
83
,
455
(
1993
).
96.
C.J.
Jameson
,
Chem. Rev. (Washington, D.C.)
91
,
1375
(
1991
).
97.
A.A. Auer, T.B. Pedersen, and J. Gauss (unpublished).
98.
W.L.
Meerts
,
F.H.
De Leeuw
, and
A.
Dynamus
,
Chem. Phys.
22
,
319
(
1977
);
more recent spin-rotation constants with slightly reduced error bars have been reported in:
G.
Klapper
,
F.
Lewen
,
R.
Gendriesch
,
S.P.
Belov
, and
G.
Winnewisser
,
J. Mol. Spectrosc.
201
,
124
(
2000
).
99.
Note that it is not necessary to choose as reference the compound for which δ=0, as relative shifts can be obtained in a more general manner via δ=σref−σ+δref.δref corresponds here to the (experimental) relative shift for the reference compound chosen to convert the absolute shieldings to the usual relative scale.
100.
Note that methane has been chosen, since the usual reference compound tetramethylsilane (TMS) is too large for the current study. In addition, the use of TMS would have led to additional complications due to the nonunique choice of the appropriate silicon basis.
101.
This is due to the fact that the error in the calculation of the C13 shielding constant of methane turns out to be smaller (by a few ppm) than in corresponding calculations for other molecules (see Fig. 3) and that therefore only a partial error cancellation occurs when CH4 is used as theoretical reference. Results are typically much better if tetramethylsilane (TMS) is chosen as reference in the computations.
102.
Note that Fig. 12 of Ref. 10 displayed relative C13 chemical shifts that are incorrect for DFT-B3LYP due to an error in the calculation for the reference compound CH4. All values should be reduced by 6 ppm, thus improving the agreeement with experiment slightly and yielding results of similar accuracy as in the DFT-BP86 calculations.
103.
It should be noted that it is well known in the literature that standard DFT leads to an overestimation of the paramagnetic contribution and thus yields too low shielding constants. This is also the reason why Malkin et al. (Ref. 42) suggested an empirical modification of the orbital-energy denominator in the sum-over-states DFT formulation of nuclear magnetic shieldings constants.
104.
M.
Kállay
and
P.R.
Surjan
,
J. Chem. Phys.
113
,
1359
(
2000
);
S.
Hirata
,
M.
Nooijen
and
R.J.
Bartlett
,
Chem. Phys. Lett.
326
,
255
(
2000
);
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
Note that such calculations are currently not possible for NMR chemical shieldings. However, a first step has been achieved by the recent implementation of analytic gradients for general CC methods [M. Kállay, J. Gauss, and P.G. Szalay (unpublished)].
105.
An interesting ansatz to estimate the basis-set limit in NMR chemical shielding calculations has been presented by Kupka et al. [
T.
Kupka
,
B.
Ruscic
, and
R.E.
Botto
,
J. Phys. Chem. A
106
,
10396
(
2002
)], although the accuracy of the extrapolated results is currently unknown.
106.
H.
Nakatsuji
,
M.
Takashima
, and
M.
Hada
,
Chem. Phys. Lett.
233
,
95
(
1995
).
107.
O.L.
Malkina
,
B.
Schimmelpfennig
,
M.
Kaupp
,
B.A.
Hess
,
P.
Chandra
,
U.
Wahlgren
, and
V.G.
Malkin
,
Chem. Phys. Lett.
296
,
93
(
1998
).
108.
J.
Vaara
,
K.
Ruud
,
O.
Vahtras
,
H.
Ågren
, and
J.
Jokisaari
,
J. Chem. Phys.
109
,
1212
(
1998
);
J.
Vaara
,
K.
Ruud
, and
O.
Vahtras
,
J. Chem. Phys.
111
,
2900
(
1999
).
109.
W.H.
Flygare
,
Chem. Rev. (Washington, D.C.)
74
,
653
(
1974
);
W.H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1978).
This content is only available via PDF.
You do not currently have access to this content.