Benchmark calculations of nuclear magnetic shielding constants are performed for a set of 16 molecules. It is demonstrated that near-quantitative accuracy deviation from experiment) can be achieved if (1) electron correlation is adequately treated by employing the coupled-cluster singles and doubles (CCSD) model augmented by perturbative corrections for triple excitations [CCSD(T)], (2) large (uncontracted) basis sets are used, (3) calculations are performed at accurate equilibrium geometries (obtained from CCSD(T)/cc-pVTZ or CCSD(T)/cc-pVQZ calculations), and (4) vibrational averaging is included. In this way calculations corrected for vibrational effects], the mean deviation and standard deviation from experiment are 1.6 and 0.8 ppm, respectively. Less complete theoretical treatments result in larger errors. Consideration of relative shifts might reduce the mean deviation (through an appropriately chosen reference compound), but cannot change the standard deviation. Density-functional theory calculations of nuclear magnetic shielding constants are found to be less accurate, intermediate between Hartree–Fock self-consistent-field and second-order Møller–Plesset perturbation theory.
Skip Nav Destination
Article navigation
15 June 2003
Research Article|
May 27 2003
Quantitative prediction of gas-phase nuclear magnetic shielding constants
Alexander A. Auer;
Alexander A. Auer
Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
Search for other works by this author on:
Jürgen Gauss;
Jürgen Gauss
Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
Search for other works by this author on:
John F. Stanton
John F. Stanton
Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712
Search for other works by this author on:
J. Chem. Phys. 118, 10407–10417 (2003)
Article history
Received:
February 19 2003
Accepted:
March 21 2003
Citation
Alexander A. Auer, Jürgen Gauss, John F. Stanton; Quantitative prediction of gas-phase nuclear magnetic shielding constants. J. Chem. Phys. 15 June 2003; 118 (23): 10407–10417. https://doi.org/10.1063/1.1574314
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00