The properties of the branching and seam spaces of conical intersections in a molecule with an odd number of electrons are explored for the general case, where the molecule has no spatial symmetry and the Hamiltonian explicitly includes the spin–orbit interaction. A realization of the homomorphism connecting the symplectic group of order 4, Sp(4), and the group of proper rotations in five dimensions SO(5) is used to find an orthogonal representation of the branching space that preserves the standard form of the electronic Hamiltonian near a conical intersection. An invariant property of the branching space is also identified. These findings extend previous results for the nonrelativistic Hamiltonian and the relativistic Hamiltonian with Cs symmetry. A model Hamiltonian representing a tetra-atomic molecule with three coupled doublet electronic states is used to demonstrate the efficacy of the approach and illustrate possible seam loci. The seam of conical intersection is shown to have two distinct branches, one bounded and one infinite in extent. The branching spaces of these seams are characterized.

1.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
2.
J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry (Wiley, New York, 1990).
3.
M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH, New York, 1995).
4.
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
Chem. Soc. Rev.
25
,
321
(
1996
).
5.
W. Domcke and H. Köppel, in Encylopedia of Computational Chemistry, edited by P. v. R. Schleyer (Wiley, London, 1998).
6.
H.-M.
Steuhl
,
C.
Bornemann
, and
M.
Klessinger
,
Chem. Eur. J.
5
,
2404
(
1999
).
7.
A. L.
Sobolewski
and
W.
Domcke
,
Chem. Phys. Lett.
315
,
293
(
1999
).
8.
M. A.
Robb
,
M.
Garavelli
,
M.
Olivucci
, and
F.
Bernardi
,
Rev. Comput. Chem.
15
,
87
(
2000
).
9.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
6277
(
2001
).
10.
C. A.
Mead
,
J. Chem. Phys.
70
,
2276
(
1979
).
11.
D. R.
Yarkony
,
J. Chem. Phys.
114
,
2601
(
2001
).
12.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
116
,
2825
(
2002
).
13.
S.
Matsika
and
D. R.
Yarkony
,
J. Phys. Chem. B
106
,
8108
(
2002
).
14.
C. A.
Mead
,
Rev. Mod. Phys.
64
,
51
(
1992
).
15.
M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
16.
H. Weyl, The Classical Groups, Their Invariants and Representations (Princeton University Press, Princeton, 1997).
17.
B. R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton University Press, Princeton, 1998).
18.
D. R.
Yarkony
,
Theor. Chem. Acc.
98
,
197
(
1997
).
19.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
2642
(
2001
).
20.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
115
,
2038
(
2001
).
21.
L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1960).
22.
G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Harcourt/Academic, New York, 1988).
23.
D. R.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
24.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
115
,
5066
(
2001
).
25.
S.
Matsika
and
D. R.
Yarkony
,
J. Phys. Chem. A
106
,
2580
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.