An approach for directly determining the liquid–vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal–isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.

1.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
2.
G. M.
Torrie
and
J. P.
Valleau
,
J. Chem. Phys.
66
,
1402
(
1977
).
3.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
4.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
5.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
6.
A. D. Bruce and N. B. Wilding, Adv. Chem. Phys. (to be published).
7.
G. R.
Smith
and
A. D.
Bruce
,
J. Phys. A
28
,
6623
(
1995
).
8.
J. S.
Wang
,
T. K.
Tay
, and
R. H.
Swendsen
,
Phys. Rev. Lett.
82
,
476
(
1999
).
9.
J. S.
Wang
,
Comput. Phys. Commun.
122
,
22
(
1999
).
10.
J. S.
Wang
and
R. H.
Swendsen
,
J. Stat. Phys.
106
,
245
(
2002
).
11.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
,
Europhys. Lett.
46
,
282
(
1999
).
12.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
,
J. Stat. Phys.
98
,
321
(
2000
).
13.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
14.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
15.
W. W.
Wood
,
J. Chem. Phys.
48
,
415
(
1968
).
16.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
17.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
18.
D. S.
Corti
,
Mol. Phys.
100
,
1887
(
2002
).
19.
D. S.
Corti
,
Phys. Rev. E
64
,
016128
(
2001
).
20.
D. S.
Corti
and
G.
Soto-Campos
,
J. Chem. Phys.
108
,
7959
(
1998
).
21.
K.
Han
and
H. S.
Son
,
J. Chem. Phys.
115
,
7793
(
2001
).
22.
P.
Attard
,
J. Chem. Phys.
103
,
9884
(
1995
).
23.
R.
Eppinga
and
D.
Frenkel
,
Mol. Phys.
52
,
1303
(
1984
).
24.
D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, San Diego, 2002).
25.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
26.
A. Z.
Panagiotopoulos
,
J. Phys.: Condens. Matter
12
,
R25
(
2000
).
27.
A. D.
Bruce
and
N. B.
Wilding
,
Phys. Rev. Lett.
68
,
193
(
1992
).
28.
N. B.
Wilding
and
A. D.
Bruce
,
J. Phys.: Condens. Matter
4
,
3087
(
1992
).
29.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
).
30.
N. B.
Wilding
,
J. Phys.: Condens. Matter
9
,
585
(
1997
).
31.
J. R.
Errington
,
Phys. Rev. E
67
,
012102
(
2003
).
32.
K.
Binder
,
Phys. Rev. A
25
,
1699
(
1982
).
33.
C. D.
Holcomb
,
P.
Clancy
, and
J. A.
Zollweg
,
Mol. Phys.
78
,
437
(
1993
).
34.
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
441
(
1924
);
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
463
(
1924
).
35.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
36.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
37.
J. E.
Hunter
and
W. P.
Reinhardt
,
J. Chem. Phys.
103
,
8627
(
1995
).
38.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
112
,
6411
(
2000
).
39.
M.
Mecke
,
J.
Winkelman
, and
J.
Fisher
,
J. Chem. Phys.
107
,
9264
(
1997
).
40.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
812
(
1987
).
41.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
42.
B.
Smit
,
P.
de Smedt
, and
D.
Frenkel
,
Mol. Phys.
68
,
931
(
1989
).
43.
J. P.
Valleau
,
J. Chem. Phys.
108
,
2962
(
1998
).
44.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
103
,
6314
(
1999
).
45.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
111
,
9731
(
1999
).
46.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
47.
Q.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8745
(
2002
).
48.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
49.
Q. L.
Yan
and
J. J.
de Pablo
,
J. Chem. Phys.
111
,
9509
(
1999
).
50.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
51.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
103
,
2703
(
1995
).
52.
J. I.
Siepmann
,
Mol. Phys.
70
,
1145
(
1990
).
53.
J. I.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
54.
D.
Frenkel
,
G. C. A. M.
Mooij
, and
B.
Smit
,
J. Phys.: Condens. Matter
4
,
3053
(
1992
).
55.
H. J. C.
Berendsen
,
R. J.
Grigera
, and
T. P.
Stroatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
56.
J. R. Errington (unpublished results).
This content is only available via PDF.
You do not currently have access to this content.