By use of nonequilibrium simulations a coarse-grained model of polyethylene, developed in our previous work [J. Chem. Phys. 115, 2846 (2001); 117, 925 (2002)], is subjected to a planar Couette flow. Both transient and steady-state nonlinear flow properties are investigated for shear rates varying from 30 to 3000 μs−1 and chain lengths varying from C80H162 to C800H1602. We report rheological data (shear viscosity, normal stress differences) and structural data (chain dimensions and the order tensor), and compare them with experimental results, where available. The locations of maxima and magnitudes of overshoots in the shear stress and normal stress difference are in agreement with experimental results. We also observe an undershoot in the transient extinction angle and a decrease of the steady-state extinction angle with shear rate, both of which are in very good agreement with recent experiments. Two rheological “rules,” the stress–optical rule and the Cox–Merz rule, are tested. It is shown that the extinction angle, as calculated from stress components, remains equal to the optical extinction angle even for high shear rates, where the stress–optical rule is no longer strictly valid.

1.
J. T.
Padding
and
W. J.
Briels
,
J. Chem. Phys.
117
,
925
(
2002
).
2.
J. T. Padding, Computer Simulation of Entanglements in Visoelastic Polymer Melts, Ph.D. thesis, University of Twente (Twente University Press, Enschede, 2002); see also http://www.tup.utwente.nl.
3.
J. T.
Padding
and
W. J.
Briels
,
J. Chem. Phys.
115
,
2846
(
2001
).
4.
M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
5.
J.
Fang
,
M.
Kröger
, and
H. C.
Öttinger
,
J. Rheol.
44
,
1293
(
2000
).
6.
C. C.
Hua
,
J. D.
Schieber
, and
D. C.
Venerus
,
J. Rheol.
43
,
701
(
1999
).
7.
A. E.
Likhtman
,
S. T.
Miller
, and
T. C. B.
McLeish
,
Phys. Rev. Lett.
85
,
4550
(
2000
).
8.
D. W.
Mead
,
R. G.
Larson
, and
M.
Doi
,
Macromolecules
31
,
7895
(
1998
).
9.
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
62
,
279
(
1996
).
10.
G.
Marrucci
and
G.
Ianniruberto
,
J. Non-Newtonian Fluid Mech.
82
,
275
(
1999
).
11.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
12.
T.
Aoyagi
and
M.
Doi
,
Comput. Theor. Polym. Sci.
10
,
317
(
2000
).
13.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
14.
M. P.
Allen
,
Mol. Phys.
52
,
705
(
1984
).
15.
J. D.
Moore
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
,
Phys. Rev. E
60
,
6956
(
1999
).
16.
R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1 (Wiley, New York, 1977).
17.
D. S.
Pearson
,
E. A.
Herbolzheimer
,
G.
Marrucci
, and
N.
Grizzuti
,
J. Polym. Sci., Part B: Polym. Phys.
29
,
1589
(
1991
).
18.
D. S.
Pearson
,
A. D.
Kiss
, and
L. J.
Fetters
,
J. Rheol.
33
,
517
(
1989
).
19.
J. P.
Oberhauser
,
L. G.
Leal
, and
D. W.
Mead
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
265
(
1998
).
20.
M.
Bercea
,
B.
Peiti
,
B.
Dimionescu
, and
P.
Navard
,
Macromolecules
26
,
7095
(
1993
).
21.
The small amount that was added in Ref. 1 to account for the difference between initial shear relaxation of atomistically detailed and coarse-grained systems is now omitted.
22.
R. A.
Stratton
,
J. Colloid Interface Sci.
22
,
517
(
1966
).
23.
M.
Kröger
and
S.
Hess
,
Phys. Rev. Lett.
85
,
1128
(
2000
).
24.
M.
Kröger
,
W.
Loose
, and
S.
Hess
,
J. Rheol.
37
,
1057
(
1993
).
25.
D. J.
Olson
,
E. F.
Brown
, and
W. R.
Burghardt
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
2671
(
1998
).
26.
D. W.
Mead
and
R. G.
Larson
,
Macromolecules
23
,
2524
(
1990
).
27.
W. P.
Cox
and
E. H.
Merz
,
J. Polym. Sci., Part B: Polym. Phys.
28
,
619
(
1958
).
28.
G.
Ianniruberto
and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
65
,
241
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.