Previously, various symmetry-adapted (SA) and broken-symmetry (BS) computations have been performed for strongly correlated transition metal species so as to examine magnetic properties in simple cluster models such as binuclear transition metal oxides. Though SA computations such as the complete active space configuration interaction and CASSCF are desirable for estimating physical constants, these computations are heavy for larger cluster models with strongly correlated electrons. K2NiF4 is known to be the two-dimensional perovskite-type antiferromagnet and to have the electronic configuration similar to that of La2CuO4. Here, we have examined the utility and applicability of the BS spin-polarized hybrid-density functional theory (HUDFT) for cluster models of K2NiF4. As the result, HUDFT calculation such as UB2LYP has provided the reasonable effective exchange integral (Jab) followed by our approximately spin projected scheme, in comparison to the experimental one. It was also found that the square planar tetranuclear model has provided the most reasonable Jab value by HUDFT. In addition, external effects such as putting point charges around cluster models and changing distances between nickel and fluorine have been also examined. The natural orbital analysis by HUDFT has been carried out to obtain natural orbitals and their occupation numbers. Charge density, spin density, and chemical indices expressed by the occupation numbers have been also obtained to elucidate the nature of the chemical bonds in the K2NiF4-type solids.

1.
Organic Conjugation, edited by A. Nakamura, K. Ueyama, and K. Yamaguchi (Springer, Tokyo, Japan, 2002).
2.
(a)
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
);
(b)
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
(a)
W.
Heisenberg
,
Z. Phys.
38
,
411
(
1926
);
(b) Magneto-Structural Correlations in Exchange Coupled Systems, edited by R. D. Willett (Reidel, Dordrecht, 1985).
4.
(a)
J. B.
Goodenough
,
J. Phys. Chem. Solids
6
,
287
(
1958
);
(b)
J.
Kanamori
,
J. Phys. Chem. Solids
10
,
87
(
1959
);
(c)
P. W.
Anderson
,
Solid State Phys.
14
,
99
(
1963
);
(d)
A. P.
Ginsberg
,
R. H.
Martin
,
R. W.
Brookes
, and
R. C.
Sherwood
,
Inorg. Chem.
11
,
2884
(
1972
).
5.
(a)
P. J.
Hay
,
F. C.
Thibeault
, and
R.
Hoffman
,
J. Am. Chem. Soc.
97
,
4884
(
1975
);
(b)
P.
be Loth
,
P.
Cassoux
,
J. P.
Daudy
, and
J. P.
Malrieu
,
J. Am. Chem. Soc.
103
,
4007
(
1981
).
6.
A.
Bencini
,
F.
Totti
,
C. A.
Daul
,
K.
Doclo
,
P.
Fantucci
, and
V.
Barone
,
Inorg. Chem.
36
,
5022
(
1997
).
7.
E.
Ruiz
,
J.
Cano
,
S.
Alvarez
, and
P.
Alemany
,
J. Comput. Chem.
20
,
1391
(
1991
).
8.
A. P.
Ginsberg
,
J. Am. Chem. Soc.
102
,
111
(
1980
).
9.
L.
Noodeleman
,
J. Chem. Phys.
74
,
5737
(
1981
).
10.
L.
Noodelman
and
E. R.
Davidson
,
Chem. Phys.
109
,
131
(
1986
).
11.
(a) The calculated results were presented at the poster session of theoretical chemistry, Pacifi Chem (Hawaii, 1984);
(b) K. Yamaguchi, Y. Takahara, and T. Fueno, Appl. Quant. Chem, edited by V. H. Smith (Reidel, Dordrecht, 1986), p. 155.
12.
J.
Casanova
and
F.
Illas
,
Phys. Rev. B
50
,
3789
(
1994
).
13.
J. G.
Bedonorz
and
K. A.
Müller
,
Z. Phys. B: Condens. Matter
64
,
189
(
1986
).
14.
(a)
K.
Yamaguchi
,
K.
Ohta
,
S.
Yabushita
, and
T.
Fueno
,
Chem. Phys. Lett.
49
,
555
(
1977
);
(b)
K.
Yamaguchi
,
Int. J. Quantum Chem.
14
,
269
(
1980
).
15.
K.
Yamaguchi
,
S.
Yabushita
,
T.
Fueno
,
S.
Kato
,
K.
Morokuma
, and
S.
Iwata
,
Chem. Phys. Lett.
563
,
71
(
1980
).
16.
(a)
K.
Yamaguchi
,
Y.
Takahara
,
T.
Fueno
, and
K.
Nasu
,
Jpn. J. Appl. Phys., Part 1
26
,
L1362
(
1987
);
(b)
H.
Fukuyama
and
K.
Yoshida
,
Jpn. J. Appl. Phys., Part 1
26
,
L371
(
1987
);
(c)
J. E.
Hirsch
,
Phys. Rev. Lett.
54
,
1317
(
1985
).
17.
H.
Nagao
,
M.
Nishino
,
Y.
Shigeta
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
80
,
721
(
2000
).
18.
(a)
E.
Legrand
and
R.
Plumier
,
Phys. Status Solidi
2
,
317
(
1962
);
(b)
E.
Legrand
and
R.
Plumier
,
J. Phys.
23
,
474
(
1962
).
19.
L. J.
de Jongh
and
A. R.
Miedema
,
Adv. Phys.
23
,
1
(
1974
).
20.
(a)
R. J.
Birgeneau
,
H. J.
Guggenheim
, and
G.
Shirane
,
Phys. Rev. Lett.
22
,
720
(
1969
);
(b)
R. J.
Birgeneau
,
H. J.
Guggenheim
, and
G.
Shirane
,
Phys. Rev. B
1
,
2211
(
1970
).
21.
S. R.
Chinn
,
H. J.
Zeiger
, and
J. R.
O’Conor
,
Phys. Rev. B
3
,
1709
(
1971
).
22.
(a)
N.
Motoyama
,
H.
Eisaki
, and
S.
Uchida
,
Phys. Rev. Lett.
76
,
3212
(
1996
);
(b)
P.
Bourges
,
H.
Casalta
,
A. S.
Ivanov
, and
D.
Petitgrand
,
Phys. Rev. Lett.
79
,
4906
(
1997
).
23.
(a)
K.
Yamaguchi
,
Chem. Phys. Lett.
30
,
288
(
1975
);
(b)
K.
Yamaguchi
,
Chem. Phys. Lett.
33
,
330
(
1975
);
(c)
K.
Yamaguchi
,
Chem. Phys. Lett.
35
,
230
(
1975
).
24.
K.
Terakura
,
T.
Oguchi
,
A. R.
Williams
, and
J.
Kübler
,
Phys. Rev. B
30
,
4734
(
1984
).
25.
(a)
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
);
(b)
K.
Anderson
,
P. A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
26.
K.
Yamaguchi
,
M.
Okumura
,
W.
Mori
,
J.
Maki
,
K.
Takeda
,
T.
Noro
, and
K.
Tanaka
,
Chem. Phys. Lett.
210
,
201
(
1993
).
27.
K.
Yamaguchi
,
K.
Ohta
,
S.
Yabushita
, and
T.
Fueno
,
Chem. Phys. Lett.
149
,
537
(
1987
).
28.
S.
Yamanaka
,
M.
Okumura
,
K.
Yamaguchi
, and
K.
Hirao
,
Chem. Phys. Lett.
225
,
213
(
1994
).
29.
(a) Methods in Computational Molecular Physics, edited by S. Wilson and G. H. F. Direcksen (Plenum, New York, 1992);
(b)
D.
Mukherjee
,
R. K.
Moitra
, and
A.
Mukhopadhyay
,
Mol. Phys.
30
,
1861
(
1975
);
(c)
I.
Lindgren
,
Int. J. Quantum Chem.
12
,
33
(
1978
);
(d)
E. R.
Davidson
and
C. F.
Bender
,
Chem. Phys. Lett.
59
,
369
(
1978
);
(e)
L.
Adamowicz
,
J. P.
Malrieu
, and
V. V.
Ivanov
,
J. Chem. Phys.
112
,
10075
(
2000
).
30.
S.
Yamanaka
,
T.
Kawakami
,
H.
Nagao
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
231
,
25
(
1994
).
31.
(a)
T. V.
Russo
,
R. L.
Martin
, and
P. J.
Hay
,
J. Chem. Phys.
101
,
7729
(
1994
);
(b)
T. V.
Russo
,
R. L.
Martin
, and
P. J.
Hay
,
J. Chem. Phys.
102
,
8023
(
1995
).
32.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
33.
(a)
R. L.
Martin
and
F.
Illas
,
Phys. Rev. Lett.
79
,
1539
(
1997
);
(b)
F.
Illas
and
R. L.
Martin
,
J. Chem. Phys.
108
,
2519
(
1998
).
34.
M.
Nishino
,
Y.
Yoshioka
,
K.
Yamaguchi
,
K.
Mashima
,
K.
Tani
, and
A.
Nakamura
,
J. Phys. Chem. A
101
,
705
(
1997
).
35.
M.
Nishino
,
Y.
Yoshioka
,
K.
Yamaguchi
,
K.
Mashima
,
K.
Tani
, and
A.
Nakamura
,
Bull. Chem. Soc. Jpn.
71
,
99
(
1998
).
36.
M.
Nishino
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
297
,
51
(
1998
).
37.
(a) 
M.
Nishino
,
K.
Mashima
,
S.
Takeda
,
M.
Tanaka
,
W.
Mori
,
K.
Tani
,
A.
Nakamura
, and
K.
Yamaguchi
,
Mol. Cryst. Liq. Cryst.
306
,
321
(
1997
);
(b)
M.
Nishino
,
K.
Mashima
,
S.
Takeda
,
M.
Tanaka
,
W.
Mori
,
K.
Tani
,
A.
Nakamura
, and
K.
Yamaguchi
,
Mol. Cryst. Liq. Cryst.
306
,
463
(
1997
).
38.
T.
Kawakami
,
S.
Yamanaka
,
Y.
Takano
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Bull. Chem. Soc. Jpn.
71
,
2097
(
1998
).
39.
(a) 
M.
Mitani
,
Y.
Takano
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
J. Chem. Phys.
111
,
1309
(
1999
);
(b)
M.
Mitani
,
D.
Yamaki
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
J. Chem. Phys.
111
,
2283
(
1999
);
(c)
M.
Mitani
,
H.
Mori
,
Y.
Takano
,
D.
Yamaki
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
J. Chem. Phys.
113
,
4035
(
2000
);
(d)
M.
Mitani
,
D.
Yamaki
,
Y.
Takano
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
J. Chem. Phys.
113
,
10486
(
2000
).
40.
K. Yamaguchi, Self-Consistent Field Theory and Applications, edited by R. Carto and M. Klobukowski (Elsevier, Amsterdam, 1990), p. 727.
41.
(a)
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
);
(b)
J. C.
Ramı́rez
,
C.
Soriano
,
R. O.
Esquivel
,
R. P.
Sagar
,
M.
, and
V. H.
Smith
,Jr.
,
Phys. Rev. A
56
,
4477
(
1997
);
(c)
G. T.
Smith
,
H. L.
Schmider
, and
V. H.
Smith
, Jr.
,
Phys. Rev. A
65
,
032508
(
2002
).
42.
(a)
K.
Yamaguchi
and
T.
Fueno
,
Chem. Phys.
19
,
35
(
1977
);
(b)
K.
Yamaguchi
,
Chem. Phys.
29
,
117
(
1978
).
43.
(a)
S.
Yamanaka
,
M.
Okumura
,
M.
Nakano
, and
K.
Yamaguchi
,
J. Mol. Struct.: THEOCHEM
310
,
205
(
1994
);
(b)
K.
Yamaguchi
,
M.
Okumura
,
K.
Takeda
, and
S.
Yamanaka
,
Int. J. Quantum Chem.
27
,
501
(
1993
).
44.
(a)
H.
Isobe
,
Y.
Takano
,
Y.
Kitagawa
,
T.
Kawakami
,
S.
Yamanaka
,
K.
Yamaguchi
, and
K. N.
Houk
,
Mol. Phys.
100
,
717
(
2002
);
(b)
K.
Yamaguchi
,
T.
Kawakami
,
Y.
Takano
,
Y.
Kitagawa
,
Y.
Yamashita
, and
H.
Fujita
,
Int. J. Quantum Chem.
90
,
370
(
2002
).
45.
(a)
K.
Kambe
,
J. Phys. Soc. Jpn.
5
,
481
(
1950
);
(b)
W.
Heisenberg
,
Z. Phys.
49
,
619
(
1928
).
46.
(a)
Y.
Takano
,
S.
Kubo
,
T.
Onishi
,
H.
Isobe
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
335
,
395
(
2001
);
(b)
Y.
Takahara
,
K.
Yamaguchi
and
T.
Fueno
,
Chem. Phys. Lett.
157
,
211
(
1989
);
(c)
Y.
Takahara
,
K.
Yamaguchi
and
T.
Fueno
,
Chem. Phys. Lett.
158
,
95
(
1989
).
47.
(a)
A. E.
Clark
and
E. R.
Davidson
,
J. Chem. Phys.
115
,
7382
(
2001
);
(b)
E. R.
Davidson
and
A. E.
Clark
,
Mol. Phys.
100
,
373
(
2002
).
48.
Probability, Statics, and Statistical Physics, edited by R. Rosencrantz (Reidel, Dordrecht, 1993).
49.
(a)
K.
Takatsuka
,
T.
Fueno
, and
K.
Yamaguchi
,
Theor. Chim. Acta
48
,
175
(
1978
);
(b)
P. O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
);
(c)
K.
Takatsuka
and
T.
Fueno
,
J. Chem. Phys.
69
,
661
(
1978
);
(d)
V. N.
Staroverov
and
E. R.
Davidson
,
J. Am. Chem. Soc.
122
,
186
(
2000
);
(e)
V. N.
Staroverov
and
E. R.
Davidson
,
Chem. Phys. Lett.
330
,
161
(
2000
);
(f)
V. N.
Staroverov
and
E. R.
Davidson
,
J. Am. Chem. Soc.
122
,
7377
(
2000
).
50.
(a)
K.
Wolinski
and
P.
Pulay
,
Chem. Phys. Lett.
140
,
255
(
1987
);
(b)
K.
Wolinski
and
P.
Pulay
,
J. Chem. Phys.
90
,
3647
(
1987
).
51.
D.
Yamaki
,
Y.
Shigeta
,
S.
Yamanaka
,
H.
Nagao
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
84
,
546
(
2001
).
52.
S.
Yamanaka
,
D.
Yamaki
,
Y.
Shigeta
,
H.
Nagao
,
Y.
Yoshioka
,
N.
Suzuki
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
80
,
664
(
2000
).
53.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1998
).
54.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
55.
C.
Lee
,
W.
Wang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
56.
M. J. Frich, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 94, Gaussian, Inc., Pittsburgh, PA, 1995.
57.
(a) Density Functional Theory of Atoms and Molecules, edited by R. G. Parr and W. Young (Oxford University Press, Oxford, 1989);
(b) Adv. Quantum. Chem. 21, Density Functional Theory of Many-Fermion Systems, edited by S. B. Tricky (Academic, San Diego, 1990);
(c) Density Functional Methods in Chemistry, edited by J. K. Labonowski and J. W. Andzelm (Springer-Verlag, New York, 1991);
(d) Adv. Quantum. Chem. 33, Density Functional Theory, edited by J. M. Seminario (Academic, San Diego, 1998);
(e) Theoretical and Computational Chemistry. 2, Modern Density Functional Theory: A Tool for Chemistry, edited by J. M. Seminario and Politzer (Elsevier, Amsterdam, 1995);
(f) Theoretical and Computational Chemistry. 4, Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).
58.
T.
Onishi
,
T.
Soda
,
Y.
Kitagawa
,
Y.
Takano
,
D.
Yamaki
,
S.
Takamizawa
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Mol. Cryst. Liq. Cryst.
343
,
133
(
2000
).
59.
T.
Onishi
,
Y.
Takano
,
Y.
Kitagawa
,
T.
Kawakami
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Polyhedron
20
,
1177
(
2000
).
60.
T.
Soda
,
Y.
Kitagawa
,
T.
Onishi
,
Y.
Takano
,
Y.
Shigeta
,
H.
Nagao
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
319
,
223
(
2000
).
61.
H.
Tatewaki
and
S.
Huzinaga
,
J. Chem. Phys.
71
,
4339
(
1980
).
62.
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
63.
H. B.
Schlegel
,
Adv. Chem. Phys.
67
,
249
(
1987
).
64.
(a)
L. J.
de Jongh
and
R.
Block
,
Physica B
79
,
569
(
1975
);
(b)
D.
Bloch
,
J. Phys. Chem. Solids
27
,
881
(
1966
).
65.
J.
Casanova
and
F.
Illas
,
J. Chem. Phys.
101
,
7683
(
1994
).
66.
(a)
O.
Gunnarson
,
M.
Jonson
, and
B. I.
Lundqvist
,
Phys. Rev. B
20
,
3136
(
1979
);
(b)
R. O.
Jones
and
O.
Gunnarson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
67.
(a)
W. E.
Pickett
,
Rev. Mod. Phys.
61
,
433
(
1989
);
(b)
D. J.
Singh
and
W. E.
Pickett
,
Phys. Rev. B
44
,
7715
(
1991
).
68.
(a)
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Anderson
,
Phys. Rev. B
44
,
943
(
1991
);
(b)
I. V.
Solovyev
,
P. H.
Dederichs
, and
V. I.
Anisimov
,
Phys. Rev. B
50
,
16861
(
1994
).
69.
(a)
A.
Zinger
,
J. P.
Perdew
, and
G. L.
Oliver
,
Solid State Commun.
34
,
933
(
1980
);
(b)
J. P.
Perdew
and
A.
Zinger
,
Phys. Rev. B
23
,
5048
(
1981
);
(c)
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Chem. Phys.
80
,
1972
(
1984
);
(d)
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
,
Phys. Rev. B
28
,
5992
(
1983
);
(e)
Z.
Szotek
,
W. M.
Temmerman
, and
H.
Winter
,
Phys. Rev. B
47
,
4029
(
1993
);
(f)
W. M.
Temmerman
,
Z.
Szotek
, and
H.
Winter
,
Phys. Rev. B
47
,
1184
(
1993
).
70.
See EPAPS Document No. E-JCPSA6-118-307319 for supplemental tables.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.