Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+,NO2,CO2,NF2,NO22−,O3,ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.

1.
W. H.
Moores
and
R.
McWeeney
,
Proc. R. Soc. London, Ser. A
332
,
365
(
1973
).
2.
B.
Engels
,
L. A.
Eriksson
, and
S.
Lunell
,
Adv. Quantum Chem.
27
,
298
(
1996
).
3.
J. E. Harriman, Theoretical Foundations of Electron Spin Resonance (Academic, New York, 1978).
4.
G. H. Lushington, Ph.D. thesis, University of New Brunswick, Fredericton, NB, Canada, 1996.
5.
G. H.
Lushington
,
P.
Bündgen
, and
F.
Grein
,
Int. J. Quantum Chem.
55
,
377
(
1995
).
6.
P.
Bündgen
,
G. H.
Lushington
, and
F.
Grein
,
Int. J. Quantum Chem., Quantum Chem. Symp.
29
,
283
(
1995
).
7.
G. H.
Lushington
and
F.
Grein
,
Theor. Chim. Acta
93
,
259
(
1996
).
8.
G. H.
Lushington
,
P. J.
Bruna
, and
F.
Grein
,
Z. Phys. D: At., Mol. Clusters
36
,
301
(
1996
).
9.
A. V.
Luzanov
,
E. N.
Babich
, and
V. V.
Ivanov
,
J. Mol. Struct.: THEOCHEM
311
,
211
(
1994
).
10.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
);
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
39
,
217
(
1975
);
R. J.
Buenker
,
S. D.
Peyerimhoff
, and
W.
Butscher
,
Mol. Phys.
35
,
771
(
1978
);
R. J. Buenker, in Current Aspects of Quantum Chemistry, Studies in Physical and Theoretical Chemistry, edited by R. Carbó (Elsevier, Amsterdam, 1982), Vol. 21, p. 17;
C. M. Marian, Ph.D. thesis, Bonn, Germany, 1981; B. A. Hess, Ph.D. thesis, Bonn, Germany, 1981;
P.
Chandra
and
R. J.
Buenker
,
J. Chem. Phys.
79
,
358
(
1983
).
11.
G. H.
Lushington
and
F.
Grein
,
Int. J. Quantum Chem.
60
,
1679
(
1996
).
12.
G. H.
Lushington
and
F.
Grein
,
J. Chem. Phys.
106
,
3292
(
1997
).
13.
P. J.
Bruna
and
F.
Grein
,
Int. J. Quantum Chem.
77
,
324
(
2000
).
14.
P. J.
Bruna
and
F.
Grein
,
J. Phys. Chem. A
105
,
3328
(
2001
).
15.
P. J.
Bruna
,
G. H.
Lushington
, and
F.
Grein
,
J. Mol. Struct.: THEOCHEM
527
,
139
(
2000
).
16.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
);
S.
Grimme
and
M.
Waletzke
,
Phys. Chem. Chem. Phys.
2
,
2075
(
2000
).
17.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
18.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
);
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
);
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
19.
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
,
J. Comput. Chem.
23
,
824
(
2002
).
20.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
21.
D.
Danovich
,
C. M.
Marian
,
T.
Neuheuser
,
S. D.
Peyerimhoff
, and
S.
Shaik
,
J. Phys. Chem. A
102
,
5923
(
1998
).
22.
J.
Tatchen
and
C. M.
Marian
,
Chem. Phys. Lett.
313
,
351
(
1999
).
23.
B. Schimmelpfennig, AMFI: An atomic spin–orbit mean-field integral program, University of Stockholm, Sweden, 1996.
24.
O. L.
Malkina
,
B.
Schimmelpfennig
,
M.
Kaupp
,
B. A.
Hess
,
P.
Chandra
,
U.
Wahlgren
, and
V. G.
Malkin
,
Chem. Phys. Lett.
296
,
93
(
1998
).
25.
O.
Christiansen
,
J.
Gauss
, and
B.
Schimmelpfennig
,
Phys. Chem. Chem. Phys.
2
,
965
(
2000
).
26.
K.
Ruud
,
B.
Schimmelpfennig
, and
H.
Ågren
,
Chem. Phys. Lett.
310
,
215
(
1999
).
27.
M.
Kaupp
,
R.
Reviakine
,
O. L.
Malkina
,
A.
Arbuznikov
,
B.
Schimmelpfennig
, and
V. G.
Malkin
,
J. Comput. Chem.
23
,
794
(
2002
).
28.
P.
Vahtras
,
M.
Engström
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
351
,
424
(
2002
).
29.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, 1998.
30.
P. J.
Bruna
,
G. H.
Lushington
, and
F.
Grein
,
Chem. Phys.
225
,
1
(
1997
).
31.
P. J.
Bruna
and
F.
Grein
,
J. Phys. Chem. A
102
,
3141
(
1998
).
32.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
33.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
34.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
35.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
36.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
37.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem. A
101
,
3388
(
1997
).
38.
O. L.
Malkina
,
J.
Vaara
,
B.
Schimmelpfennig
,
M.
Munzarová
,
V. G.
Malkin
, and
M.
Kaupp
,
J. Am. Chem. Soc.
122
,
9206
(
2000
).
39.
F.
Neese
,
J. Chem. Phys.
115
,
11080
(
2001
).
40.
D.
Jayatilaka
,
J. Chem. Phys.
108
,
7587
(
1998
).
41.
E.
van Lenthe
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
107
,
2488
(
1997
).
42.
P.
Belanzoni
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
114
,
4421
(
2001
).
43.
H. M.
Quiney
and
P.
Belanzoni
,
Chem. Phys. Lett.
353
,
253
(
2002
).
44.
O.
Vahtras
,
B.
Minaev
, and
H.
Ågren
,
Chem. Phys. Lett.
281
,
186
(
1997
).
45.
G. H.
Lushington
,
J. Phys. Chem. A
104
,
2969
(
2000
).
46.
C. M.
Marian
,
Ber. Bunsenges. Phys. Chem.
99
,
254
(
1995
).
47.
L. B. Knight and W. Weltner, Jr., J. Chem. Phys. 55, 5066 (1971).
48.
S.
Patchkovskii
and
T.
Ziegler
,
J. Phys. Chem. A
105
,
5490
(
2001
).
49.
W. Weltner, Jr., Magnetic Atoms and Molecules (Van Nostrand Reinhold, New York, 1983).
50.
A. J.
McKinley
,
E.
Karakyriakos
,
L. B.
Knight
, Jr.
,
R.
Babb
, and
A.
Williams
,
J. Phys. Chem. A
104
,
3528
(
2000
).
51.
A.
Reuveni
,
R.
Poupko
, and
Z.
Luz
,
J. Magn. Reson.
18
,
358
(
1975
).
52.
P. J.
Bruna
and
F.
Grein
,
J. Chem. Phys.
109
,
9439
(
1998
).
53.
C. A. McDowell, P. Raghunathan, and J. C. Tait, J. Chem. Phys. 59, 5858 (1973).
54.
W. Gordy, Theory and Application of Electron Spin Resonance Spectroscopy (Wiley, New York, 1978).
55.
L. B.
Knight
and
J.
Steadman
,
J. Chem. Phys.
80
,
1018
(
1984
).
56.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
57.
P.
Belanzoni
,
E. J.
Baerends
,
S.
van Asselt
, and
P. B.
Langewen
,
J. Phys. Chem.
99
,
13094
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.