Three distinct liquid–liquid coexistence regions were observed for ST2 model water by restricted ensemble Monte Carlo simulations of the isotherms of homogenized systems and by phase equilibria simulations in the Gibbs ensemble. The lowest density liquid–liquid transition meets the liquid–vapor phase transition at a triple point and ends in a metastable critical point. A percolation analysis evidences, that the phase separations at the lowest and highest densities can be attributed to the separation of differently coordinated water molecules. The densities of the obtained four phases of supercooled water correlate with experimentally observed densities of amorphous ice.

1.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature (London)
314
,
76
(
1985
);
O.
Mishima
,
Phys. Rev. Lett.
85
,
334
(
2000
).
2.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
);
F.
Sciortino
,
P. H.
Poole
,
U.
Essmann
, and
H. E.
Stanley
,
Phys. Rev. E
55
,
727
(
1997
);
S.
Harrington
,
R.
Zhang
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
78
,
2409
(
1997
).
3.
M.
Yamada
,
S.
Mossa
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
195701
(
2002
).
4.
H.
Tanaka
,
Nature (London)
380
,
328
(
1996
);
H.
Tanaka
,
J. Chem. Phys.
105
,
5099
(
1996
).
5.
V. V.
Brazshkin
,
R. N.
Voloshin
,
A. G.
Lyapin
, and
S. V.
Popova
,
Physics-Uspekhi
42
,
941
(
1999
).
6.
H.
Tanaka
,
Phys. Rev. E
62
,
6968
(
2000
).
7.
J.-P.
Hansen
and
L.
Verlet
,
Phys. Rev.
184
,
151
(
1969
).
8.
D. S.
Corti
and
P. G.
Debenedetti
,
Chem. Eng. Sci.
49
,
2712
(
1994
).
9.
A. Z.
Panagiotopoulos
,
Mol. Phys.
62
,
701
(
1987
).
10.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
60
,
1545
(
1974
).
11.
I. Brovchenko, A. Geiger, and A. Oleinikova (unpublished).
12.
P. E.
Smith
and
W. F.
van Gunsteren
,
Mol. Simul.
15
,
233
(
1995
);
D.
van der Spoel
,
P. J.
van Maaren
, and
J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
13.
C. A.
Angell
,
S.
Borick
, and
M.
Grabow
,
J. Non-Cryst. Solids
205–207
,
463
(
1996
).
14.
W.
Wagner
and
A.
Prus
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
) (above 273 K);
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
87
,
4840
(
1987
) (below 273 K).
15.
H.
Kanno
and
C. A.
Angell
,
J. Chem. Phys.
70
,
4008
(
1979
).
16.
A.
Oleinikova
,
I.
Brovchenko
,
A.
Geiger
, and
B.
Guillot
,
J. Chem. Phys.
117
,
3296
(
2002
).
17.
N. N.
Medvedev
and
Y. I.
Naberukhin
,
J. Non-Cryst. Solids
94
,
402
(
1987
).
18.
D.
Paschek
and
A.
Geiger
,
J. Phys. Chem. B
103
,
4139
(
1999
).
19.
P. H.
Poole
,
F.
Sciortino
,
T.
Grande
,
H. E.
Stanley
, and
C. A.
Angell
,
Phys. Rev. Lett.
73
,
1632
(
1994
).
20.
C. A.
Tulk
,
C. J.
Benmore
,
J.
Urquidi
,
D. D.
Klug
,
J.
Neuefeind
,
B.
Tomberli
, and
P. A.
Egelstaff
,
Science (Washington, DC, U.S.)
297
,
1320
(
2002
).
21.
W. E.
Brower
, Jr.
,
D. J.
Schedgick
, and
L. K.
Bigelow
,
J. Phys. Chem. B
106
,
4565
(
2002
).
22.
T.
Loerting
,
C.
Salzmann
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
5355
(
2001
).
23.
T. M.
Truskett
,
P. G.
Debenedetti
, and
S.
Torquato
,
J. Chem. Phys.
114
,
2401
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.