Spin-complete versions of the spin-flip configuration-interaction-singles (SF-CIS) approach have been investigated to determine the impact of making the wave function an eigenfunction of Ŝ2. The method has been implemented within an extended restricted active space configuration interaction formalism. Spin-complete results are presented for excitation energies, equilibrium geometries, and potential energy curves for dissociation of a single bond in several small molecules. The effect of different orbital choices has also been investigated. The spin-complete results are compared both to results using the original spin-flip method and to more computationally expensive benchmarks. Using spin eigenfunctions dramatically improves upon the accuracy of the SF-CIS approach.

1.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
2.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
3.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
4.
R. J. Bartlett and J. F. Stanton, in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1994), Vol. 5, pp. 65–169.
5.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
6.
K.
Ruedenberg
,
M.
Schmidt
,
M.
Gilbert
, and
S.
Elbert
,
Chem. Phys.
71
,
41
(
1982
).
7.
M.
Schmidt
and
M.
Gordon
,
Annu. Rev. Phys. Chem.
49
,
233
(
1998
).
8.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
9.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
10.
A. I.
Krylov
,
Chem. Phys. Lett.
350
,
522
(
2001
).
11.
A. I.
Krylov
and
C. D.
Sherrill
,
J. Chem. Phys.
116
,
3194
(
2002
).
12.
Y.
Shao
,
M.
Head-Gordon
, and
A.
Krylov
,
J. Chem. Phys.
118
,
4807
(
2003
).
13.
A. I.
Krylov
,
J. Chem. Phys.
113
,
6052
(
2000
).
14.
C. D. Sherrill and H. F. Schaefer, The Configuration Interaction Method: Advances in Highly Correlated Approaches, in Advances in Quantum Chemistry, Vol. 34, edited by P.-O. Löwdin (Academic, New York, 1999), pp. 143–269.
15.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
16.
C. D.
Sherrill
and
H. F.
Schaefer
,
J. Phys. Chem.
100
,
6069
(
1996
).
17.
J.
Stanton
,
J. Chem. Phys.
101
,
8928
(
1994
).
18.
In case of two nonequivalent fragments, such as Be and Ne, or two H2 molecules with one of the bonds being stretched, the lowest energy Hartree–Fock triplet state is naturally localized on Be or on the stretched H2 molecule, respectively. However, in case of two identical fragments in a symmetric configuration, the lowest triplet state cannot be described by a single Slater determinant using symmetry-adapted orbitals. Therefore, it is necessary to use a symmetry-broken Hartree–Fock wave function to describe localization in the case of symmetrically arranged, noninteracting equivalent fragments.
19.
H.
Koch
,
H. Jørgen Aa.
Jensen
, and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3345
(
1990
).
20.
Since the target states are found by diagonalization of the Hamiltonian matrix, the block-diagonal structure of the latter ensures that the eigenvalues of the subsystems A and B are also eigenvalues of the combined system AB. The total SF energies, which are the sum of the high-spin reference energy and the corresponding transition energy, are thus also size-consistent due to size-consistency of the Hartree–Fock model. Note that the matrix of the Hamiltonian (2) has eigenvalues corresponding to the simultaneous excitations of both fragments, or to the charge transfer states, i.e., those from the HAB,AB block. The interpretation of these roots requires caution as described in footnote 22 of Ref. 17. For example, due to the truncated nature of the excitation operators, the EOM and CI models fail to describe situations when both fragments are excited with the same accuracy as the excitations on individual fragments. Due to similar considerations, Eq. (1) does not mean that for two noninteracting fragments, the total SF energy of the composite system equals the sum of total SF energy of individual fragments; rather, the total SF energy is equal to the sum of SF energy of fragment A and Hartree–Fock energy for the fragment B.
21.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
22.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
23.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
24.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
25.
L.
Salem
and
C.
Rowland
,
Angew. Chem., Int. Ed. Engl.
11
,
92
(
1972
).
26.
L.
Slipchenko
and
A.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.