Using the inherent structure formalism originally proposed by Stillinger and Weber [Phys. Rev. A 25, 978 (1982)], we generalize the thermodynamics of an energy landscape that has an ideal glass transition and derive the consequences for its equation of state. In doing so, we identify a separation of configurational and vibrational contributions to the pressure that corresponds with simulation studies performed in the inherent structure formalism. We develop an elementary model of landscapes appropriate for simple liquids that is based on the scaling properties of the soft-sphere potential complemented with a mean-field attraction. The resulting equation of state provides an accurate representation of simulation data for the Lennard-Jones fluid, suggesting the usefulness of a landscape-based formulation of supercooled liquid thermodynamics. Finally, we consider the implications of both the general theory and the model with respect to the so-called Sastry density and the ideal glass transition. Our analysis shows that a quantitative connection can be made between properties of the landscape and a simulation-determined Sastry density, and it emphasizes the distinction between an ideal glass transition and a Kauzmann equal-entropy condition.

1.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
2.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, N.J., 1996).
3.
W.
Götze
,
J. Phys.: Condens. Matter
11l
,
A1
(
1999
).
4.
M.
Mézard
and
G.
Parisi
,
Phys. Rev. Lett.
82
,
747
(
1999
).
5.
R. J.
Speedy
,
J. Chem. Phys.
100
,
6684
(
1994
).
6.
X.
Xia
and
P. G.
Wolynes
,
Phys. Rev. Lett.
86
,
5526
(
2001
).
7.
T. M.
Nieuwenhuizen
,
Phys. Rev. Lett.
80
,
5580
(
1998
).
8.
L. F.
Cugliandolo
,
J.
Kurchan
, and
L.
Peliti
,
Phys. Rev. E
55
,
3898
(
1997
).
9.
S.
Franz
and
M. A.
Virasoro
,
J. Phys. A
33
,
5580
(
1998
).
10.
F. H.
Stillinger
,
Science
267
,
1935
(
1995
).
11.
R. J.
Speedy
,
J. Phys. Chem. B
103
,
2060
(
1999
).
12.
A.
Scala
et al.,
Nature (London)
406
,
166
(
2000
).
13.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Phys. Rev. E
56
,
5533
(
1997
).
14.
I.
Saika-Voivod
,
P. H.
Poole
, and
F.
Sciortino
,
Nature (London)
412
,
514
(
2001
).
15.
F. H. Stillinger and P. G. Debenedetti, 116, 3353 (2002).
16.
S.
Mossa
et al.,
Phys. Rev. E
65
,
041205
(
2002
).
17.
K. J.
Rao
,
S.
Kumar
, and
M. H.
Bhat
,
J. Phys. Chem. B
105
,
9023
(
2001
).
18.
W.
Kauzmann
,
Chem. Rev.
43
,
219
(
1948
).
19.
F. H.
Stillinger
,
J. Chem. Phys.
88
,
7818
(
1988
).
20.
F. H.
Stillinger
,
P. G.
Debenedetti
, and
T. M.
Truskett
,
J. Phys. Chem. B
105
,
11809
(
2001
).
21.
F.
Sciortino
,
W.
Kob
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
12
,
6525
(
2000
).
22.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
23.
L.
Angelani
et al.,
Phys. Rev. Lett.
85
,
5356
(
2000
).
24.
P. G.
Debenedetti
,
T. M.
Truskett
,
C. P.
Lewis
, and
F. H.
Stillinger
,
Adv. Chem. Eng.
28
,
21
(
2001
).
25.
E.
La Nave
,
S.
Mossa
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
225701
(
2002
).
26.
S.
Sastry
,
Nature (London)
409
,
164
(
2001
).
27.
F.
Sciortino
,
P.
Tartaglia
, and
W.
Kob
,
Physica A
306
,
343
(
2002
).
28.
S. Mossa, E. L. Nave, F. Sciortino, and P. Tartaglia, Europhys. Jo urnal B (to be published).
29.
S. Mossa, E. L. Nave, F. Sciortino, and P. Tartaglia, J. Phys. Condens. Matter (to be published).
30.
M.
Utz
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
J. Chem. Phys.
114
,
10049
(
2001
).
31.
C. J.
Roberts
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
J. Phys. Chem. B
103
,
10258
(
1999
).
32.
R. A.
La Violette
,
J. L.
Budzien
, and
F. H.
Stillinger
,
J. Chem. Phys.
112
,
8072
(
2000
).
33.
V. K.
Shen
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
J. Phys. Chem. B
106
,
10447
(
2002
).
34.
P. G.
Debenedetti
,
F. H.
Stillinger
,
T. M.
Truskett
, and
C. J.
Roberts
,
J. Phys. Chem. B
103
,
7390
(
1999
).
35.
S.
Sastry
,
Phys. Rev. Lett.
85
,
590
(
2000
).
36.
R. J. Speedy, in Liquids Under Negative Pressure, edited by A. R. Imre, H. J. Maris, and P. R. Williams, NATO Advanced Research Workshop, Vol. 84 of NATO Science Series II: Mathematics, Physics and Chemistry (Kluwer Academic, Dordrecht 2002).
37.
F. H.
Stillinger
,
Phys. Rev. E
59
,
48
(
1999
).
38.
F. H.
Stillinger
,
Phys. Rev. E
63
,
011110
(
2001
).
39.
F.
Sciortino
and
P.
Tartaglia
,
Phys. Rev. Lett.
86
,
107
(
2001
).
40.
F. H.
Stillinger
,
J. Phys. Chem. B
102
,
2807
(
1998
).
41.
W.
Kob
,
F.
Sciortino
, and
P.
Tartaglia
,
Europhys. Lett.
49
,
590
(
2000
).
42.
S.
Sastry
,
J. Phys.: Condens. Matter
12
,
6515
(
2000
).
43.
F. W.
Starr
et al.,
Phys. Rev. E
63
,
041201
(
2001
).
44.
B.
Derrida
,
Phys. Rev. Lett.
45
,
79
(
1980
).
45.
B.
Derrida
,
Phys. Rev. B
24
,
2613
(
1981
).
46.
T.
Keyes
,
J.
Chowdhary
, and
J.
Kim
,
Phys. Rev. E
66
,
051110
(
2002
).
47.
M.
Mézard
and
G.
Parisi
,
J. Phys.: Condens. Matter
12
,
6655
(
2000
).
48.
J. D.
Bryngelston
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
).
49.
J. N.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
50.
A.
Heuer
and
S.
Buechner
,
J. Phys.: Condens. Matter
12
,
6535
(
2000
).
51.
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
J. Chem. Phys.
56
,
3812
(
1972
).
52.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
53.
W. G.
Hoover
and
M.
Ross
,
Contemp. Phys.
12
,
339
(
1971
).
54.
R. J.
Speedy
,
J. Phys. Condens. Matter
15
, S
1243
(
2003
).
55.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1998
).
56.
We do not consider basin enumeration functions whose derivative is nonmonotonic. Such behavior would introduce first-order phase transitions.
This content is only available via PDF.
You do not currently have access to this content.