The adsorption of long flexible chains from dilute solution is studied by Monte Carlo simulation of a coarse-grained bead-spring model, and the results are interpreted in terms of phenomenological theories, using both mean field approaches and scaling concepts. It is shown that the surface excess, i.e., the integral of the local density difference of the monomers close to the surface relative to the bulk changes its sign very close to the adsorption transition (that is a sharp transition in the limit where the chain length diverges to infinity) for long chains, and it can be described in terms of the standard scaling description that has previously been tested for polymers with one end anchored on the surface (“polymer mushrooms”). Attention is also paid to the question on how this description changes when the temperature T of the polymer solution approaches the theta temperature Θ. Since the theta point can also be considered as an end point of a line of critical points, where the polymer solution phase separates into a dilute solution of collapsed chains and a more concentrated solution in the bulk, the adsorbing wall for T<Θ causes the existence of wetting layers. Conjectures about relations between wetting transitions for T near Θ and the adsorption transition are also presented.

1.
A.
Milchev
and
K.
Binder
,
J. Comput.-Aided Mater. Des.
2
,
167
(
1996
).
2.
K.
Binder
,
A.
Milchev
, and
J.
Baschnagel
,
Annu. Rev. Mater. Sci.
26
,
107
(
1996
).
3.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
4.
J. C.
Le Guillou
and
J.
Zinn-Justin
,
Phys. Rev. B
21
,
3976
(
1980
).
5.
J. des Cloizeaux and G. Jannink, Polymers in Solution: Their Modeling and Structure (Clarendon, Oxford, 1990).
6.
L. Schäfer, Excluded Volume Effects in Polymer Solutions (Springer, Berlin, 1999).
7.
H. L.
Frisch
,
R.
Simha
, and
F. R.
Eirich
,
J. Chem. Phys.
21
,
365
(
1953
);
H. L.
Frisch
,
R.
Simha
, and
F. R.
Eirich
,
J. Phys. Chem.
57
,
584
(
1953
).
8.
P. G.
de Gennes
,
J. Phys. (Paris)
37
,
1445
(
1976
).
9.
P. G.
de Gennes
,
Macromolecules
13
,
1069
(
1980
).
10.
E.
Eisenriegler
,
K.
Kremer
, and
K.
Binder
,
J. Chem. Phys.
77
,
6296
(
1982
).
11.
E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993).
12.
S.
Metzger
,
M.
Müller
,
K.
Binder
, and
J.
Baschnagel
,
Macromol. Theory Simul.
11
,
985
(
2002
).
13.
H. W.
Diehl
and
M.
Shpot
,
Nucl. Phys. B
528
,
595
(
1998
).
14.
K. Binder, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 1.
15.
S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1988), Vol. 12, p. 1.
16.
K.
Binder
and
P. C.
Hohenberg
,
Phys. Rev. B
6
,
3461
(
1972
);
K.
Binder
and
P. C.
Hohenberg
,
Phys. Rev. B
9
,
2194
(
1974
).
17.
P. G.
de Gennes
and
P.
Pincus
,
J. Phys. (France) Lett.
44
,
L241
(
1983
).
18.
P. G.
de Gennes
,
J. Phys. (France) Lett.
36
,
L55
(
1975
).
19.
I. D. Lawrie and S. Sarbach, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1984), Vol. 9, p. 1.
20.
I.
Schmidt
and
K.
Binder
,
J. Phys. (Paris)
46
,
1631
(
1985
).
21.
B.
Widom
,
Physica A
194
,
523
(
1993
);
B.
Widom
,
J. Stat. Phys.
52
,
1343
(
1988
).
22.
I.
Schmidt
and
K.
Binder
,
Z. Phys. B: Condens. Matter
67
,
369
(
1987
).
23.
S.
Puri
and
K.
Binder
,
Z. Phys. B: Condens. Matter
86
,
263
(
1992
).
24.
H.
Nakanishi
and
M. E.
Fisher
,
Phys. Rev. Lett.
49
,
1565
(
1982
).
25.
K.
Binder
and
D. P.
Landau
,
Phys. Rev. B
37
,
1745
(
1988
);
K.
Binder
,
D. P.
Landau
, and
S.
Wansleben
,
Phys. Rev. B
40
,
6971
(
1989
).
26.
K.
Binder
and
D. P.
Landau
,
J. Chem. Phys.
96
,
1444
(
1992
).
27.
A.
Sariban
and
K.
Binder
,
J. Chem. Phys.
86
,
5859
(
1987
);
A.
Sariban
and
K.
Binder
,
Macromolecules
21
,
711
(
1988
).
28.
M.
Müller
and
L. G.
MacDowell
,
Macromolecules
33
,
3902
(
2000
).
29.
R.
Rajesh
,
D.
Dhar
,
D.
Giri
,
S.
Kumar
, and
Y.
Singh
,
Phys. Rev. E
65
,
056
124
(
2002
).
30.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
31.
C.
Bennemann
,
W.
Paul
,
K.
Binder
, and
B.
Dünweg
,
Phys. Rev. E
57
,
843
(
1998
);
C.
Bennemann
,
J.
Baschnagel
,
W.
Paul
, and
K.
Binder
,
Comput. Theor. Polym. Sci.
9
,
217
(
1999
).
32.
H.
Meirovitch
and
S.
Livne
,
J. Chem. Phys.
88
,
4507
(
1988
).
33.
R.
Hegger
and
P.
Grassberger
,
J. Phys. A
27
,
4069
(
1994
).
34.
K. Binder, in Computational Modeling of Polymers, edited by J. Bicerano (Dekker, New York, 1992), p. 221.
35.
More details on the algorithms can be found in Ref. 12 and in S. Metzger, Dissertation, Johannes Gutenberg–Universität Mainz, 2002 (unpublished).
36.
A. K.
Kron
,
Polym. Sci. U.S.S.R.
7
,
1361
(
1965
);
F. T.
Wall
and
F.
Mandel
,
J. Chem. Phys.
63
,
4592
(
1975
).
37.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 1996).
38.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
39.
A.
Milchev
and
K.
Binder
,
Macromolecules
29
,
343
(
1996
).
40.
We have adsorbed a linear dependence of the chemical potential per polymer into the definition of the (reduced) chemical potential μ. In dilute solution, one obtains for the polymer density: ρbulk=Z1exp(μ/kBT)∼Nγ−1exp([μ−N ln zeff]/kBT)∼Nγ−1exp/kBT), where Z1=exp(−μconf/kBT)∼Nγ−1zeffN is the single-chain partition function [cf. Eq. (6) and Fig. 8]. At fixed (reduced) chemical potential the polymer density scales like ρbulk∼Nγ−1.
This content is only available via PDF.
You do not currently have access to this content.