A general relationship is established between semiclassical and centroid-based methods for calculating real-time quantum-mechanical correlation functions. It is first shown that the linearized semiclassical initial-value-representation (LSC-IVR) approximation can be obtained via direct linearization of the forward-backward action in the exact path integral expression for the correlation function. A Kubo-transformed two-time correlation function, with the position operator as one of the two operators, is then cast in terms of a carefully crafted exact path integral expression. Linearization of the corresponding forward–backward action, supplemented by the assumption that the dynamics of the centroid is decoupled from that of the higher normal modes, is then shown to lead to the centroid correlation function.

1.
D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).
2.
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II—Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).
3.
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
4.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
5.
B. J. Berne, G. Ciccotti, and D. F. Coker, Eds., Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, New Jersey, 1998).
6.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
7.
N.
Makri
,
Annu. Rev. Phys. Chem.
50
,
167
(
1999
).
8.
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
).
9.
G. D.
Billing
,
J. Chem. Phys.
99
,
5849
(
1993
).
10.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
11.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
12.
P. J.
Kuntz
,
J. Chem. Phys.
95
,
141
(
1991
).
13.
A. I.
Krylov
et al.,
J. Chem. Phys.
104
,
3651
(
1996
).
14.
J.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8014
(
2001
).
15.
K.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).
16.
E.
Gallicchio
and
B. J.
Berne
,
J. Chem. Phys.
105
,
7064
(
1996
).
17.
E.
Gallicchio
,
S. A.
Egorov
, and
B. J.
Berne
,
J. Chem. Phys.
109
,
7745
(
1998
).
18.
S. A.
Egorov
,
E.
Gallicchio
, and
B. J.
Berne
,
J. Chem. Phys.
107
,
9312
(
1997
).
19.
G.
Krilov
and
B. J.
Berne
,
J. Chem. Phys.
111
,
9147
(
1999
).
20.
E.
Rabani
,
G.
Krilov
, and
B. J.
Berne
,
J. Chem. Phys.
112
,
2605
(
2000
).
21.
E.
Sim
,
G.
Krilov
, and
B.
Berne
,
J. Phys. Chem. A
105
,
2824
(
2001
).
22.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
).
23.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
24.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
25.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
26.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6184
(
1994
).
27.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
28.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
29.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
30.
D. R.
Reichman
,
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
,
J. Chem. Phys.
113
,
919
(
2000
).
31.
A.
Calhoun
,
M.
Pavese
, and
G. A.
Voth
,
Chem. Phys. Lett.
262
,
415
(
1996
).
32.
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
).
33.
M.
Pavese
and
G. A.
Voth
,
Chem. Phys. Lett.
249
,
231
(
1996
).
34.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
106
,
1154
(
1997
).
35.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
610
(
1998
).
36.
K.
Kinugawa
,
Chem. Phys. Lett.
292
,
454
(
1998
).
37.
M.
Pavese
,
D. R.
Bernard
, and
G. A.
Voth
,
Chem. Phys. Lett.
300
,
93
(
1999
).
38.
S.
Jang
,
Y.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. A
103
,
10289
(
1999
).
39.
R.
Ramirez
,
T.
Lopez-Ciudad
, and
J. C.
Noya
,
Phys. Rev. Lett.
81
,
3303
(
1998
).
40.
R.
Ramirez
and
T.
Lopez-Ciudad
,
Phys. Rev. Lett.
83
,
4456
(
1999
).
41.
R.
Ramirez
and
T.
Lopez-Ciudad
,
J. Chem. Phys.
111
,
3339
(
1999
).
42.
T.
Lopez-Ciudad
and
R.
Ramirez
,
J. Chem. Phys.
113
,
10849
(
2000
).
43.
J.
Poulsen
,
S. R.
Keiding
, and
P. J.
Rossky
,
Chem. Phys. Lett.
336
,
488
(
2001
).
44.
J.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8024
(
2001
).
45.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
9209
(
2001
).
46.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
116
,
3223
(
2002
).
47.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
48.
E.
Pollak
and
J.
Liao
,
J. Chem. Phys.
108
,
2733
(
1998
).
49.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
50.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
51.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
52.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1981
).
53.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
54.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
105
,
10312
(
1996
).
55.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
108
,
2277
(
1998
).
56.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
57.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
58.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
59.
J. S.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
7753
(
1999
).
60.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
61.
O.
Kühn
and
N.
Makri
,
J. Phys. Chem. A
103
,
9487
(
1999
).
62.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
63.
M.
Ovchinnikov
,
V. A.
Apkarian
, and
G. A.
Voth
,
J. Chem. Phys.
184
,
7130
(
2001
).
64.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
65.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
116
,
9207
(
2002
).
66.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
67.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
68.
J. H. V.
Vleck
,
Proc. Natl. Acad. Sci. U.S.A.
14
,
178
(
1928
).
69.
M. C.
Gutzwiller
,
J. Math. Phys.
8
,
1979
(
1967
).
70.
M. C.
Gutzwiller
,
J. Math. Phys.
12
,
343
(
1971
).
71.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin, 1990).
72.
R. G.
Littlejohn
,
J. Stat. Phys.
68
,
7
(
1992
).
73.
P.
Pechukas
,
Phys. Rev.
181
,
174
(
1969
).
74.
S.
Levit
and
U.
Smilansky
,
Ann. Phys. (N.Y.)
108
,
165
(
1977
).
75.
S.
Levit
,
K.
Mohring
,
U.
Smilansky
, and
T.
Dreyfus
,
Ann. Phys. (N.Y.)
114
,
223
(
1978
).
76.
V. P. Maslov and M. V. Fedoriouk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Boston, 1981).
77.
W. H.
Miller
,
J. Chem. Phys.
95
,
9428
(
1991
).
78.
E. J.
Heller
,
J. Chem. Phys.
95
,
9431
(
1991
).
79.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
80.
K. G.
Kay
,
J. Chem. Phys.
101
,
2250
(
1994
).
81.
D.
Provost
and
P.
Brumer
,
Phys. Rev. Lett.
74
,
250
(
1995
).
82.
S.
Garashchuk
and
D.
Tannor
,
Chem. Phys. Lett.
262
,
477
(
1996
).
83.
S.
Keshavamurthy
and
W. H.
Miller
,
Chem. Phys. Lett.
218
,
183
(
1994
).
84.
B. W.
Spath
and
W. H.
Miller
,
J. Chem. Phys.
104
,
95
(
1996
).
85.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
).
86.
V. S.
Filinov
,
Nucl. Phys. B
271
,
717
(
1986
).
87.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
88.
A. R.
Walton
and
D. E.
Manolopoalos
,
Mol. Phys.
87
,
961
(
1996
).
89.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
108
,
8870
(
1998
).
90.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
110
,
6635
(
1999
).
91.
H.
Wang
,
D. E.
Manolopoulos
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
6317
(
2001
).
92.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
(
1998
).
93.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
94.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
95.
W. H.
Miller
,
J. Phys. Chem. A
103
,
9384
(
1999
).
96.
J. S.
Shao
,
J. L.
Liao
, and
E.
Pollak
,
J. Chem. Phys.
108
,
9711
(
1998
).
97.
J. L.
Liao
and
E.
Pollak
,
Chem. Phys.
268
,
295
(
2001
).
98.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
99.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
13
,
1343
(
1999
).
100.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
59
,
R4729
(
1999
).
101.
V. S.
Batista
et al.,
J. Chem. Phys.
110
,
3736
(
1999
).
102.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
103.
F.
Grossmann
,
Chem. Phys. Lett.
262
,
470
(
1996
).
104.
M.
Thoss
and
W. H.
Miller
,
J. Chem. Phys.
112
,
10282
(
2000
).
105.
E. A.
Coronado
,
J.
Xing
, and
W. H.
Miller
,
Chem. Phys. Lett.
349
,
521
(
2001
).
106.
A. R.
Walton
and
D. E.
Manolopoalos
,
Chem. Phys. Lett.
244
,
448
(
1995
).
107.
B. W.
Spath
and
W. H.
Miller
,
Chem. Phys. Lett.
262
,
486
(
1996
).
108.
V. S.
Batista
and
W. H.
Miller
,
J. Chem. Phys.
108
,
498
(
1998
).
109.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
110.
H.
Wang
et al.,
J. Chem. Phys.
114
,
2562
(
2001
).
111.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
112.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
113.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
114.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, New Jersey, 1995).
115.
R. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972).
116.
Q. Shi and E. Geva (unpublished).
This content is only available via PDF.
You do not currently have access to this content.