A new method for defining an energy density for the noninteracting kinetic energy of density functional theory is given. The resulting energy density is a density functional determined completely by the kinetic energy functional itself. Although this method is not constructive, it allows for a direct comparison between exact and approximate functionals pointwise in space. For simple systems, the new energy density is calculated exactly, and compared with traditional choices, on both formal and physical grounds. Finally, the energy densities of both the gradient expansion and the von Weizsäcker approximation are calculated, and compared with the exact quantity. The errors in the von Weizsäcker approximation are identified.

1.
W.
Kohn
,
Rev. Mod. Phys.
71
,
1253
(
1999
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).
4.
Y. A. Wang and E. A. Carter, Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Kluwer, New York, 2000), p. 117.
5.
L.-W.
Wang
and
M. P.
Teter
,
Phys. Rev. B
45
,
13196
(
1992
).
6.
M.
Foley
and
P. A.
Madden
,
Phys. Rev. B
53
,
10589
(
1996
).
7.
P.
Garcia-Gonzales
,
J. E.
Alverellos
, and
P.
Tarazona
,
Phys. Rev. A
54
,
1897
(
1996
);
P.
Garcia-Gonzales
,
J. E.
Alverellos
, and
P.
Tarazona
,
Phys. Rev. A
57
,
4192
(
1998
).
8.
P.
Garcia-Gonzales
,
J. E.
Alverellos
, and
P.
Tarazona
,
Phys. Rev. B
53
,
9509
(
1996
);
P.
Garcia-Gonzales
,
J. E.
Alverellos
, and
P.
Tarazona
,
Phys. Rev. B
57
,
4857
(
1998
).
9.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
58
,
13465
(
1998
);
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
60
,
17162
(
1999
);
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
64
,
129901
(
2001
).
10.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
60
,
16350
(
1999
);
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
64
,
089903
(
2001
).
11.
P.
Garcia-Gonzalez
,
J. E.
Alvarellos
, and
E.
Chacon
,
Phys. Rev. A
62
,
014501
(
2000
).
12.
G. K.-L.
Chan
,
A. J.
Cohen
, and
N. C.
Handy
,
J. Chem. Phys.
114
,
631
(
2001
).
13.
R. A.
King
and
N. C.
Handy
,
Mol. Phys.
99
,
1005
(
2001
).
14.
W.
Kohn
,
Phys. Rev. Lett.
76
,
3168
(
1996
).
15.
W.
Kohn
and
A. E.
Mattsson
,
Phys. Rev. Lett.
81
,
3487
(
1998
).
16.
S. Wilke, V. Natoli, M. H. Cohen (unpublished).
17.
S.
Wilke
,
V.
Natoli
, and
M. H.
Cohen
,
J. Chem. Phys.
112
,
9986
(
2000
).
18.
Z.-Z.
Yang
,
S.
Liu
, and
Y. A.
Wang
,
Chem. Phys. Lett.
258
,
30
(
1996
).
19.
W.
Yang
,
Phys. Rev. A
34
,
4575
(
1986
).
20.
T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in Strong Coulomb Correlations in Electronic Structure: Beyond the Local Density Approximation, edited by V. I. Anisimov (Gordon and Breach, Tokyo, 1998).
21.
J. P. Perdew and S. Kurth, in Density Functionals: Theory and Applications, edited by D. Joubert (Springer, Berlin, 1998).
22.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
23.
K.
Burke
,
F. G.
Cruz
, and
K. C.
Lam
,
J. Chem. Phys.
109
,
8161
(
1998
).
24.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. Lett.
50
,
697
(
1983
).
25.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. B
32
,
3780
(
1985
);
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. B
35
,
9308
(
1987
).
26.
C. L.
Rogers
and
A. M.
Rappe
,
Phys. Rev. B
65
,
224117
(
2002
).
27.
R. M. Martin (unpublished).
28.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
29.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
23
,
542
(
1926
).
30.
E.
Fermi
,
Z. Phys.
48
,
73
(
1928
).
31.
E.
Engel
and
R. M.
Dreizler
,
J. Comput. Chem.
20
,
31
(
1999
).
32.
C. H.
Hodges
,
Can. J. Phys.
51
,
1428
(
1973
).
33.
D. R.
Murphy
,
Phys. Rev. A
24
,
1682
(
1981
).
34.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
35.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
36.
M.
Levy
and
H.
Ou-Yang
,
Phys. Rev. A
38
,
625
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.