In this paper we further develop the formalism of tunneling currents for the description of the tunneling transition in long-distance bridge-mediated electron transfer reactions introduced in our previous work [A. A. Stuchebrukhov, Adv. Chem. Phys. 118, 1 (2001)]. Here we consider the Hartree–Fock picture of electron tunneling in a many-electron system and, based on the corresponding orbitals analysis of the tunneling process, we introduce an effective one-electron approximation. In this picture, the (electron or hole) tunneling is described by a single pair of orbitals, as in a true one-electron theory, yet all the polarization and exchange effects characteristic for many-electron treatment are retained in it. The pair of tunneling orbitals, which is different from the usual HOMO’s of the donor and acceptor complexes, is found in a self-consistent way in a special orthogonalization procedure. This picture results in much simplified formulas for current density and for interatomic currents, as well as for the tunneling matrix element, and provides a simplified way of thinking about electron tunneling in many-electron systems.

1.
A. A.
Stuchebrukhov
,
Adv. Chem. Phys.
118
,
1
(
2001
).
2.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
104
,
8424
(
1996
).
3.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
105
,
10819
(
1996
).
4.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
107
,
6495
(
1997
).
5.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
108
,
8499
(
1998
).
6.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
108
,
8510
(
1998
).
7.
C. C.
Page
,
C. C.
Moser
,
Chen
Xiaoxi
, and
P. L.
Dutton
,
Nature (London)
402
,
47
(
1999
).
8.
C. C.
Moser
,
J. M.
Keske
,
K.
Warncke
,
R. S.
Farid
, and
L. P.
Dutton
,
Nature (London)
355
,
796
(
1992
).
9.
H. B.
Gray
and
J. R.
Winkler
,
Annu. Rev. Biochem.
65
,
537
(
1996
).
10.
R.
Langen
,
I.
Chang
,
J. P.
Germanas
,
J. H.
Richards
,
J. R.
Winkler
, and
H. B.
Gray
,
Science
268
,
1733
(
1995
).
11.
J. N.
Onuchic
,
D. N.
Beratan
,
J. R.
Winkler
, and
H. B.
Gray
,
Science
258
,
1740
(
1992
).
12.
S. S.
Skourtis
and
D.
Beratan
,
Adv. Chem. Phys.
106
,
377
(
1999
).
13.
(a)
J. J.
Regan
and
J. N.
Onuchic
,
Adv. Chem. Phys.
107
,
497
(
1999
);
(b)
I. A.
Balabin
and
J. N.
Onuchic
,
Science
290
,
114
(
2000
).
14.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
15.
M. D.
Newton
,
Chem. Rev.
91
,
767
(
1991
).
16.
M. D.
Newton
,
Adv. Chem. Phys.
106
,
303
(
1999
).
17.
M. D.
Newton
,
Int. J. Quantum Chem.
77
,
255
(
2000
).
18.
A. T.
Amos
and
G. G.
Hall
,
Proc. R. Soc. London, Ser. A
263
,
483
(
1961
).
19.
H.
King
,
R. E.
Stanton
,
H.
Kim
,
R. E.
Wyatt
, and
R. G.
Parr
,
J. Chem. Phys.
47
,
1936
(
1967
).
20.
A. F.
Voter
and
W. A.
Goddard
III
,
Chem. Phys.
57
,
253
(
1981
).
21.
E.
Heifets
,
I.
Daizadeh
,
J.
Guo
, and
A. A.
Stuchebrukhov
,
J. Phys. Chem.
102
,
2874
(
1998
).
22.
I.
Daizaheh
,
J.
Guo
, and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
110
,
8865
(
1999
).
23.
J.
Kim
and
A. A.
Stuchebrukhov
,
J. Phys. Chem.
104
,
8606
(
2000
).
24.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Macmillan, New York, 1982).
25.
Zuehe Zheng and A. A. Stuchebrukhov, J. Phys. Chem. (submitted).
26.
J.
Harriman
,
J. Chem. Phys.
40
,
2827
(
1964
).
27.
A.
Hardisson
and
J.
Harriman
,
J. Chem. Phys.
46
,
3639
(
1967
).
28.
M. G.
Cory
and
M. C.
Zerner
,
J. Phys. Chem.
36
,
7287
(
1999
).
29.
M. D.
Newton
,
K.
Ohta
, and
E.
Zhong
,
J. Phys. Chem.
95
,
2317
(
1991
);
M. D.
Newton
,
K.
Ohta
, and
E.
Zhong
,
J. Phys. Chem.
92
,
3049
(
1988
).
30.
L. Yu Zhang, R. Murphy, and R. A. Friesner (preprint).
31.
E. P. Bierwagen, T. R. Coley, and W. A. Goddard III, in Parallel Computing in Computational Chemistry, ACS symposium series, 592, pp. 84–96.
32.
J. Kim, X. Zheng, Yu. Georgievskii, and A. A. Stuchebrukhov, Bioenergetics, ACS (American Chemical Society, Washington, D.C.), Symposium series (to be published).
33.
Yu.
Georgievskii
and
A. A.
Stuchbrukhov
,
J. Chem. Phys.
113
,
10438
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.