We propose a modification to the popular 6-31G* basis set, which has recently been extended to cover first-row transition metals [Rassolov et al., J. Chem. Phys. 109, 1223 (1998)]. As demonstrated by a number of calculations, the existing basis performs poorly for many transition metals, particularly those toward the end of the series (Co, Ni, and especially Cu). The reason for this lies primarily with the 3D shell, which lacks a sufficiently diffuse exponent. A reoptimization of the D-shell exponents and coefficients by a two-step procedure, keeping the rest of the basis unchanged, corrects the problem, giving a basis set that performs uniformly well across the entire first-row transition metal series from scandium to copper.

1.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
2.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
3.
J. D.
Dill
and
J. A.
Pople
,
J. Chem. Phys.
62
,
2921
(
1975
).
4.
J. S.
Binkley
and
J. A.
Pople
,
J. Chem. Phys.
66
,
879
(
1977
).
5.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
6.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
7.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. v. R.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
8.
K. D.
Dobbs
and
W. J.
Hehre
,
J. Comput. Chem.
7
,
359
(
1986
).
9.
K. D.
Dobbs
and
W. J.
Hehre
,
J. Comput. Chem.
8
,
861
(
1987
).
10.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
11.
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
,
J. Chem. Phys.
109
,
1223
(
1998
).
12.
V. A.
Rassolov
,
M. A.
Ratner
,
J. A.
Pople
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Comput. Chem.
22
,
976
(
2001
).
13.
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
14.
J.
Baker
and
P.
Pulay
,
J. Chem. Phys.
117
,
1441
(
2002
).
15.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
16.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
,
J. Am. Chem. Soc.
102
,
339
(
1980
).
17.
C. C. J. Roothaan and P. S. Bagus, in Methods in Computational Physics, edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1963), Vol. 2, pp. 47–94.
18.
G. L.
Mali
and
J. P.
Olive
,
J. Chem. Phys.
43
,
861
(
1965
).
19.
B. Roos, C. Salez, A. Veillard, and E. Clementi, IBM Technical Report RJ518, San Jose, CA, 1968.
20.
A. V.
Mitin
,
G.
Hirsch
, and
R. J.
Buenker
,
J. Mol. Struct.: THEOCHEM
362
,
283
(
1996
).
21.
A. V.
Mitin
,
G.
Hirsch
, and
R. J.
Buenker
,
Chem. Phys. Lett.
259
,
151
(
1996
).
22.
A. V.
Mitin
,
G.
Hirsch
, and
R. J.
Buenker
,
J. Comput. Chem.
18
,
1200
(
1997
).
23.
Parallel Quantum Solutions, Fayetteville, Arkansas; http://www.pqs-chem.com; sales@pqs-chem.com
24.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
25.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
26.
M. J. Frisch, Æ. Frisch, and J. B. Foresman, GAUSSIAN 94 User’s Reference, Pittsburgh, PA, 1994, p. 61.
27.
J.
Baker
,
A.
Scheiner
, and
J.
Andzelm
,
Chem. Phys. Lett.
216
,
380
(
1993
).
28.
O.
Gunnarson
and
R. O.
Jones
,
Phys. Rev. B
31
,
7588
(
1985
).
29.
T.
Ziegler
and
J.
Li
,
Can. J. Chem.
72
,
783
(
1994
).
30.
M. C.
Holthausen
,
M.
Mohr
, and
W.
Koch
,
Chem. Phys. Lett.
240
,
245
(
1995
).
31.
D. B.
Grotjahn
,
M. A.
Brewster
, and
L. M.
Ziurys
,
J. Am. Chem. Soc.
124
,
5895
(
2002
).
32.
V.
Barone
and
C.
Adamo
,
Int. J. Quantum Chem.
61
,
443
(
1997
).
33.
E. A.
Carter
and
W. A.
Goddard
III
,
J. Phys. Chem.
92
,
5679
(
1988
).
34.
C. W.
Bauschlicher
and
S. R.
Langhoff
,
Chem. Phys. Lett.
145
,
205
(
1988
).
35.
R. S.
Ram
and
P. F.
Bernath
,
J. Chem. Phys.
105
,
2668
(
1996
).
36.
S.
Yanagisawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
112
,
545
(
2000
).
37.
C. E. Moore, Ionization Potential and Ionization from the Analysis of Optical Spectra, Natl. Bur. Stand. Ref. Data Ser. Circ.#34 (USGPO, Washington, D.C., 1970).
38.
C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser. Circ. #467 (USGPO, Washington D.C., 1949).
39.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979).
40.
O.
Launila
and
B.
Lindgren
,
J. Chem. Phys.
104
,
6418
(
1996
).
41.
J. H. Callomon, E. Hirita, K. Kuchitsu, W. J. Lafferty, A. G. Maki, and C. S. Pote, Structure Data on Free Polyatomic Molecules, Landolt-Börnstein, New Series, Group II, Vol. 7 (Springer, Berlin, 1976).
42.
A.
Almenningen
,
S.
Samdal
, and
D.
Christen
,
J. Mol. Struct.
48
,
69
(
1978
).
43.
M.
Bencheikh
,
R.
Koivisto
,
O.
Launila
, and
J. P.
Flament
,
J. Chem. Phys.
106
,
6231
(
1997
).
44.
CRC Handbook of Chemistry and Physics, 78th ed., edited by D. R. Linde (CRC, Boca Raton, FL, 1997).
45.
B.
Beagley
and
D. G.
Schmidling
,
J. Mol. Struct.
22
,
466
(
1974
).
46.
L.
Hedberg
,
T.
Ijima
, and
K.
Hedberg
,
J. Chem. Phys.
70
,
3224
(
1979
).
47.
C. J.
Whitham
,
H.
Ozeki
, and
S.
Saito
,
J. Chem. Phys.
112
,
641
(
2000
).
48.
R. J. H.
Clark
,
B. K.
Hunter
, and
D. M.
Rippon
,
Inorg. Chem.
11
,
56
(
1972
).
49.
R. J. H.
Clark
and
P. D.
Mitchell
,
J. Chem. Soc. Dalton Trans.
1972
,
2429
.
50.
L. H.
Jones
,
R. S.
McDowell
, and
M.
Goldblatt
,
J. Chem. Phys.
48
,
2663
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.