The dependence of the critical volume fraction at constant pressure as a function of the chain length of a polymer/solvent system can be described by a power law. The exponent of this power law is investigated based on an equation of state model and experimental data for various chain-molecule solutions here. The results are compared to recent molecular simulation data taken from the literature and analytical models. The theoretical models, simulation, and experimental data show that the exponent depends on the chain length of the dissolved chain molecules. The power law with a constant exponent is therefore not a universal relationship for this dependence. Based on the investigation of the chain length dependence a correlation for the critical volume fraction is proposed here. This function generalizes the Flory and a renormalization group model and is applied to the correlation of the experimental data. This more general relationship includes the power law with the exponent obtained from the Flory theory as limiting behavior. Some additional experimental data for oligomer solutions which are necessary for an investigation of the short chain length limit have been measured.

1.
L. V.
Yelash
and
T.
Kraska
,
Phys. Chem. Chem. Phys.
1
,
2449
(
1999
).
2.
A. R.
Imre
,
T.
Kraska
, and
L. V.
Yelash
,
Phys. Chem. Chem. Phys.
4
,
992
(
2002
).
3.
T.
Kraska
,
K. O.
Leonhard
,
D.
Tuma
, and
G. M.
Schneider
,
Fluid Phase Equilib.
194–197
,
469
(
2002
).
4.
T.
Kraska
,
K. O.
Leonhard
,
D.
Tuma
, and
G. M.
Schneider
,
J. Supercrit. Fluids
23
,
209
(
2002
).
5.
P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953), Chap. XIII.
6.
I. C.
Sanchez
,
Macromolecules
17
,
967
(
1984
).
7.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979), Chap. 4, Sec. 3.
8.
M.
Muthukumar
,
J. Chem. Phys.
85
,
4722
(
1986
).
9.
R.
Perzynski
,
M.
Delsanti
, and
M.
Adam
,
J. Phys. (France)
48
,
115
(
1987
).
10.
Yu. B.
Melnichenko
,
V. V.
Klepko
, and
V. V.
Shilov
,
Polymer
29
,
1010
(
1988
).
11.
B.
Chu
,
K.
Linliu
,
P.
Xie
,
Q.
Ying
,
Z.
Wang
, and
J. W.
Shook
,
Rev. Sci. Instrum.
62
,
2252
(
1991
).
12.
K. Q.
Xia
,
C.
Franck
, and
B.
Widom
,
J. Chem. Phys.
97
,
1446
(
1992
).
13.
C. L.
Caylor
and
B. M.
Law
,
J. Chem. Phys.
104
,
2070
(
1996
).
14.
A. A.
Povodyrev
,
M. A.
Anisimov
, and
J. V.
Sengers
,
Physica A
264
,
345
(
1999
).
15.
N.
Wilding
,
M.
Müller
, and
K. J.
Binder
,
Chem. Phys.
105
,
802
(
1996
).
16.
A. Z.
Panagiotopoulos
,
V.
Wong
, and
M. A.
Floriano
,
Macromolecules
31
,
912
(
1998
).
17.
A. D.
Mackie
,
A. Z.
Panagiotopoulos
, and
S. K.
Kumar
,
J. Chem. Phys.
102
,
1014
(
1995
).
18.
H.
Frauenkron
and
P.
Grassberger
,
J. Chem. Phys.
107
,
9599
(
1997
).
19.
Q.
Yan
and
J. J.
de Pablo
,
J. Chem. Phys.
113
,
5954
(
2000
).
20.
X.
An
,
H.
Zhao
,
F.
Jiang
, and
W.
Shen
,
J. Chem. Thermodyn.
28
,
1221
(
1996
).
21.
X.
An
,
F.
Jiang
,
C.
Chen
, and
W.
Shen
,
Pure Appl. Chem.
70
,
609
(
1998
).
22.
B.
Duplantier
,
J. Phys. (France)
43
,
991
(
1982
).
23.
J. S.
Hager
,
M. A.
Anisimov
,
J. V.
Sengers
, and
E. E.
Gorodetskii
,
J. Chem. Phys.
117
,
5940
(
2002
).
24.
H. C.
de Sousa
and
L. P. N.
Rebelo
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
632
(
2000
).
25.
K.
Šolc
,
K.
Dusek
,
R.
Koningsveld
, and
H.
Berghmans
,
Collect. Czech. Chem. Commun.
60
,
1661
(
1995
).
26.
A. R.
Imre
and
W. A.
Van Hook
,
Macromolecules
33
,
5308
(
2000
).
27.
R. R.
Singh
and
W. A.
Van Hook
,
J. Chem. Phys.
87
,
6088
(
1987
).
28.
R.
Koningsveld
,
L. A.
Kleintjens
, and
A. R.
Shultz
,
J. Polym. Sci., Part A-2
8
,
1261
(
1970
).
29.
Th. G.
Scholte
,
J. Polym. Sci., Part A-2
9
,
1553
(
1971
).
30.
Th. G.
Scholte
,
J. Polym. Sci. C
39
,
281
(
1972
).
31.
N.
Kuwahara
,
M.
Nakata
, and
M.
Kaneko
,
Polymer
14
,
415
(
1973
).
32.
M.
Nakata
,
N.
Kuwahara
, and
M.
Kaneko
,
J. Chem. Phys.
62
,
4278
(
1975
).
33.
B. A.
Wolf
and
M. C.
Sezen
,
Macromolecules
10
,
1010
(
1977
).
34.
M.
Nakata
,
T.
Dobashi
,
N.
Kuwahara
,
M.
Kaneko
, and
B.
Chu
,
Phys. Rev. A
18
,
2683
(
1978
).
35.
N.
Hamano
,
M.
Kuwahara
, and
M.
Kaneko
,
Phys. Rev. A
20
,
1135
(
1979
).
36.
T.
Dobashi
,
M.
Nakata
, and
M.
Kaneko
,
J. Chem. Phys.
72
,
6685
(
1980
).
37.
J.
Hashizume
,
A.
Teramoto
, and
H.
Fujita
,
J. Polym. Sci., Part B: Polym. Phys.
19
,
1405
(
1981
).
38.
K.
Shinozaki
,
T.
van Tan
,
Y.
Saito
, and
T.
Nose
,
Polymer
23
,
728
(
1982
).
39.
T.
Dobashi
,
M.
Nakata
, and
M.
Kaneko
,
J. Chem. Phys.
80
,
948
(
1984
).
40.
M.
Tsuyumoto
,
Y.
Einaga
, and
H.
Fujita
,
Polym. J. (Tokyo)
16
,
229
(
1984
).
41.
G.
Schmitz
,
H.
Klein
, and
D.
Woermann
,
Z. Naturforsch., A: Phys. Sci.
43A
,
825
(
1988
).
42.
W. A.
Goedel
,
A.
Zielesny
,
L.
Belkoura
,
T.
Engels
, and
D.
Woermann
,
Ber. Bunsenges. Phys. Chem.
94
,
17
(
1990
).
43.
H.
Yoshizaki
and
R.
Kono
,
Mem. Natl. Def. Acad. Japan
31
,
61
(
1992
).
44.
M.
Sliwinska-Bartkowiak
,
J. Phys.: Condens. Matter
5
,
407
(
1993
).
45.
P.
Urbanowicz
,
S. J.
Rzoska
,
M.
Paluch
,
B.
Sawiczki
,
A.
Szulc
, and
A.
Zioło
,
J. Chem. Phys.
201
,
575
(
1995
).
46.
K. Q.
Xia
,
X. Q.
An
, and
W. G.
Shen
,
J. Chem. Phys.
105
,
6018
(
1996
).
47.
H. J.
Lee
and
I. H.
Parl
,
Macromolecules
33
,
4983
(
2000
).
48.
X.
An
,
X.
Liu
, and
W.
Shen
,
J. Chem. Thermodyn.
29
,
669
(
1997
).
49.
S. A.
Vshivkov
and
A. P.
Safranov
,
Macromol. Chem. Phys.
198
,
3015
(
1997
).
50.
X.
An
,
X.
Cui
,
T.
Wang
, and
W.
Shen
,
J. Chem. Thermodyn.
30
,
1199
(
1998
).
51.
X.
An
,
F.
Jiang
, and
W.
Shen
,
J. Chem. Soc., Faraday Trans.
94
,
2169
(
1998
).
52.
X.
An
,
C.
Mao
,
G. H.
Sun
, and
W.
Shen
,
J. Chem. Thermodyn.
30
,
689
(
1998
).
53.
X.
An
,
J.
Yang
, and
W.
Shen
,
J. Chem. Thermodyn.
30
,
13
(
1998
).
54.
X.
An
,
J.
Yang
, and
W.
Shen
,
J. Chem. Thermodyn.
30
,
1253
(
1998
).
55.
X.
An
,
K. Q.
Xia
,
W.
Shen
, and
X. L.
Oiu
,
J. Chem. Phys.
111
,
8298
(
1999
).
56.
X.
An
,
X.
Cui
, and
W.
Shen
,
J. Chem. Thermodyn.
32
,
187
(
2000
).
57.
H. C.
de Sousa
and
L. P. N.
Rebelo
,
J. Chem. Thermodyn.
32
,
355
(
2000
).
58.
R. Koningsveld, W. H. Stockmayer, and E. Nies, Polymer Phase Diagrams (Oxford University Press, New York, 2001).
59.
M.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
60.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
61.
L. V.
Yelash
and
T.
Kraska
,
Phys. Chem. Chem. Phys.
2
,
4734
(
2000
).
62.
L. V.
Yelash
and
T.
Kraska
,
Fluid Phase Equilib.
182
,
27
(
2000
).
63.
L. V.
Yelash
,
T.
Kraska
,
E. A.
Müller
, and
N. F.
Carnahan
,
Phys. Chem. Chem. Phys.
1
,
4919
(
1999
).
64.
L. V.
Yelash
and
T.
Kraska
,
Phys. Chem. Chem. Phys.
1
,
4315
(
1999
).
65.
R. L.
Scott
and
P. H.
van Konynenburg
,
Discuss. Faraday Soc.
49
,
87
(
1970
).
66.
P. H.
van Konynenburg
and
R. L.
Scott
,
Philos. Trans.
298A
,
495
(
1980
).
67.
D.
Furman
and
R. B.
Griffiths
,
Phys. Rev. A
17
,
1139
(
1978
).
68.
L. V.
Yelash
and
T.
Kraska
,
Ber. Bunsenges. Phys. Chem.
102
,
213
(
1998
).
69.
T.
Kraska
and
U. K.
Deiters
,
J. Chem. Phys.
96
,
539
(
1992
).
70.
T.
Kraska
,
Ber. Bunsenges. Phys. Chem.
100
,
1318
(
1996
).
71.
I.
Polishuk
,
J.
Wisniak
,
H.
Segura
,
L. V.
Yelash
, and
T.
Kraska
,
Fluid Phase Equilib.
172
,
1
(
2000
).
72.
A. R.
Imre
and
W. A.
Van Hook
,
J. Phys. Chem. Ref. Data
25
,
637
(
1996
);
A. R.
Imre
and
W. A.
Van Hook
,
J. Phys. Chem. Ref. Data
25
,
1277
(
1996
).
73.
A. R.
Imre
and
W. A.
Van Hook
,
J. Polym. Sci., Part B: Polym. Phys.
25
,
637
(
1996
).
74.
L. V. Yelash, T. Kraska, A. R. Imre, and S. L. Rzoska, Proceedings of the Jülich Soft Matter Days (2001).
75.
M. A.
Anisimov
,
A. F.
Kostko
, and
J. V.
Sengers
,
Phys. Rev. E
65
,
051805
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.