We report on theoretical valence ionization spectra of molecules relevant in the stratosphere photochemistry obtained by all-electron SAC–CI (symmetry-adapted-cluster–configuration-interaction) calculations. Vertical ionization energies and pole strengths of the one- and two-electron processes of Cl2O and F2O were calculated beyond the energy region so far explored in the few other available theoretical and experimental studies to interpret the electronic structure of these molecules. Early and recently proposed incomplete assignments of the available He I photoelectron spectra are discussed and completed at least up to 20–21 eV binding energy on firmer grounds relying on valuable and accurate results based on different basis sets and an adequate treatment of electron correlations. Our theoretical data predict satellite states of Cl2O starting already in the outer-valence region because of strong correlation effects; the (2b1−1),(8a1−1), and (6b2−1) states interact with the two-electron processes and they split into more-than-two peaks. On the other hand, Koopmans’ picture is valid for the main peaks of F2O and no prominent satellites with strong intensity were found in the outer-valence region. The (4b2−1),(6a1−1), and (1a2−1) were attributed to the second band of F2O, for which different assignments or orderings of the states have previously been proposed in some experimental and theoretical works. Differences of the valence-ionization spectra of Cl2O and F2O for the appearance of the satellites in the intermediate energy region have been discussed with the aid of the calculated ionization potentials and excitation energies. For ClOOCl, we have presented the first theoretical low-energy ionization spectrum and discussed the character of the calculated states referring to the available ionization spectra of ClO radical.

1.
R. A.
Cox
and
G. D.
Hayman
,
Nature (London)
332
,
796
(
1988
).
2.
J. N.
Nee
,
J. Quant. Spectrosc. Radiat. Transf.
46
,
55
(
1991
).
3.
H. D.
Knauth
,
H.
Alberti
, and
H.
Clausen
,
J. Phys. Chem.
83
,
1604
(
1979
).
4.
W. B.
De More
and
E.
Tschuikow-Roux
,
J. Phys. Chem.
94
,
5856
(
1990
).
5.
J. B.
Burkholder
,
J. J.
Orlando
, and
C. J.
Howard
,
J. Phys. Chem.
94
,
687
(
1990
).
6.
K. J.
Huder
and
W. B.
De More
,
J. Phys. Chem.
99
,
3905
(
1995
).
7.
K.
Johnsson
,
A.
Engdahl
, and
B.
Nelander
,
J. Phys. Chem.
99
,
3965
(
1995
).
8.
F.
Jensen
and
J.
Oddershede
,
J. Phys. Chem.
94
,
2235
(
1990
).
9.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
9335
(
1993
).
10.
J. E.
Del Bene
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
246
,
541
(
1995
).
11.
A.
Toniolo
,
M.
Persico
, and
D.
Pitea
,
J. Phys. Chem. A
104
,
7278
(
2000
).
12.
S. L.
Nickolaisen
,
C. E.
Miller
,
S. P.
Sander
,
M. R.
Hand
,
I. H.
Williams
, and
J. S.
Francisco
,
J. Chem. Phys.
104
,
2857
(
1996
).
13.
L. T.
Molina
and
M. J.
Molina
,
J. Phys. Chem.
91
,
433
(
1987
).
14.
F.
Motte-Tollet
,
M.-P.
Ska
,
G. M.
Marston
,
I. C.
Walker
,
M. R. F.
Siggel
,
J. M.
Gingell
,
L.
Kaminski
,
K.
Brown
, and
N. J.
Mason
,
Chem. Phys. Lett.
275
,
298
(
1997
).
15.
W.-K.
Lee
,
K.-C.
Lau
,
C. Y.
Ng
,
H.
Baumgaertel
, and
K.-M.
Weitzel
,
J. Phys. Chem. A
104
,
3197
(
2000
).
16.
A.
Beltram
,
J.
Andres
,
S.
Noury
, and
B.
Silvi
,
J. Phys. Chem. A
103
,
3070
(
1999
).
17.
P.
Tomasello
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
116
,
2425
(
2002
).
18.
A. B.
Cornford
,
D. C.
Frost
,
F. G.
Herring
, and
C. A.
McDowell
,
J. Chem. Phys.
55
,
2820
(
1971
).
19.
C. R.
Brundle
,
M. R.
Robin
,
N. A.
Kuehler
, and
H.
Basch
,
J. Am. Chem. Soc.
94
,
1451
(
1972
).
20.
F.
Motte-Tollet
,
J.
Delwiche
,
J.
Heinesch
,
M.-J.
Hubin-Franskin
,
J. M.
Gingell
,
N. C.
Jones
,
N. J.
Mason
, and
G.
Marston
,
Chem. Phys. Lett.
284
,
452
(
1998
).
21.
D.
Wang
,
E. P. F.
Lee
,
F.
Chau
,
D. K. W.
Mok
, and
J. M.
Dyke
,
J. Phys. Chem. A
104
,
4936
(
2000
).
22.
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
17
,
197
(
1979
).
23.
K. E.
Valenta
,
K.
Vasudevan
, and
F.
Grein
,
J. Chem. Phys.
72
,
2148
(
1980
).
24.
S. R.
Langhoff
and
D. P.
Chong
,
Chem. Phys. Lett.
86
,
487
(
1982
).
25.
P.
Decleva
and
A.
Lisini
,
Chem. Phys.
106
,
39
(
1986
).
26.
C.-H.
Hu
,
D. P.
Chong
, and
M. E.
Casida
,
J. Electron Spectrosc. Relat. Phenom.
85
,
39
(
1997
).
27.
M.
Schwell
,
H.-W.
Jochims
,
B.
Wassermann
,
U.
Rockland
,
R.
Flesch
, and
E.
Rühl
,
J. Phys. Chem.
100
,
10070
(
1996
).
28.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
29.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
).
30.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
).
31.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
32.
H. Nakatsuji, Computational Chemistry-Review of Current Trends (World Scientific, Singapore, 1997), Vol. 2, pp. 62–124.
33.
H.
Nakatsuji
,
Acta Chim. Hung.
129
,
719
(
1992
).
34.
M. J. Frisch et al., GAUSSIAN 99, Revision A.8, Gaussian, Inc., Pittsburgh, PA, 1998. The SAC–CI program has been incorporated into the development version of the Gaussian suite of programs and will be published by Gaussian, Inc.
35.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
36.
H.
Nakatsuji
,
J. Chem. Phys.
83
,
713
(
1985
).
37.
H.
Nakatsuji
,
J. Chem. Phys.
83
,
5743
(
1985
).
38.
H.
Nakatsuji
,
J. Chem. Phys.
94
,
6716
(
1991
).
39.
M.
Ehara
and
H.
Nakatsuji
,
Chem. Phys. Lett.
282
,
347
(
1998
).
40.
M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews in Modern Quantum Chemistry, edited by K. D. Sen (World Scientific, Singapore, 2002), pp. 293–319.
41.
J.
Hasegawa
,
M.
Ehara
, and
H.
Nakatsuji
,
Chem. Phys.
230
,
23
(
1998
).
42.
M.
Ehara
,
P.
Tomasello
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Theor. Chem. Acc.
102
,
161
(
1999
).
43.
M.
Ehara
and
H.
Nakatsuji
,
Spectrochim. Acta, Part A
55
,
487
(
1998
).
44.
M.
Ehara
,
M.
Ishida
, and
H.
Nakatsuji
,
J. Chem. Phys.
114
,
8990
(
2001
).
45.
M.
Ishida
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
116
,
1934
(
2002
).
46.
M.
Ehara
,
M.
Ishida
, and
H.
Nakatsuji
,
J. Chem. Phys.
117
,
3248
(
2002
).
47.
(a)
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
);
(b)
L. S.
Cederbaum
and
W.
Domcke
,
Adv. Chem. Phys.
36
,
205
(
1977
);
(c)
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schrimer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
48.
P.
Tomasello
,
J. Chem. Phys.
87
,
7146
(
1987
).
49.
S. J.
Desjardin
,
A. D. O.
Bawagan
,
Z. F.
Liu
,
K. H.
Tan
,
Y.
Wang
, and
E. R.
Davidson
,
J. Chem. Phys.
102
,
6385
(
1995
).
50.
M.
Nakata
,
M.
Sugic
,
H.
Takeo
,
C.
Matsumura
,
T.
Fukuyama
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
86
,
241
(
1981
).
51.
Y.
Morino
and
S.
Saito
,
J. Mol. Spectrosc.
19
,
435
(
1966
).
52.
M.
Birk
,
M. M.
Fiedl
,
E. A.
Cohen
,
H. M.
Pickett
, and
S. P.
Sander
,
J. Chem. Phys.
91
,
6588
(
1989
).
53.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
54.
S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1984).
55.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
56.
T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1976), Vol. 3, p. 1.
57.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
58.
S.
Süzer
,
S. T.
Lee
, and
D. A.
Shirley
,
Phys. Rev. A
13
,
1842
(
1976
).
59.
R. I.
Martin
and
D. A.
Shirley
,
J. Chem. Phys.
64
,
3685
(
1976
).
60.
H. Nakatsuji, M. Hada, M. Ehara, J. Hasegawa, T. Nakajima, H. Nakai, O. Kitao, and K. Toyota, SAC/SAC–CI program system (SAC–CI96) for calculating ground, excited, ionized, and electron-attached states having singlet to septet spin multiplicities, 1996.
61.
D. K.
Bulgin
,
J. M.
Dyke
,
N.
Jonathan
, and
A.
Morris
,
J. Chem. Soc., Faraday Trans. 1
75
,
456
(
1979
).
62.
R.
Kishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
63.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
64.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
65.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
);
A. J.
Sadlej
,
Theor. Chim. Acta
79
,
123
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.