The interatomic van der Waals potentials for all the possible 21 homogeneous and heterogeneous pairs of rare gas atoms including radon are determined using the Tang–Toennies potential model and a set of previously derived combining rules. The three dispersion coefficients and the two Born–Mayer parameters needed for calculating the potential curves are listed.

1.
M. L. Klein and J. A. Venables, Rare Gas Solids (Academic, London, 1976), Vol. 1.
2.
H. Coufal, Rare Gas Solids (Springer, Berlin, 1984).
3.
N.
Runeberg
and
P.
Pyykkö
,
Int. J. Quantum Chem.
66
,
131
(
1998
).
4.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
5.
K. T.
Tang
and
J. P.
Toennies
,
Chem. Phys.
156
,
413
(
1991
).
6.
H.
Partridge
,
J. R.
Stallcop
, and
E.
Levin
,
J. Chem. Phys.
115
,
6471
(
2001
).
7.
K. T.
Tang
,
J. P.
Toennies
, and
C. L.
Yiu
,
Int. Rev. Phys. Chem.
17
,
363
(
1998
).
8.
K. T.
Tang
and
J. P.
Toennies
,
Z. Phys. D: At., Mol. Clusters
1
,
91
(
1986
).
9.
R. A. Aziz, in Inert Gases: Potentials, Dynamics and Energy Transfer in Doped Crystals, edited by M. K. Klein (Springer, Berlin, 1984), p. 5.
10.
D. A.
Barrow
and
R. A.
Aziz
,
J. Chem. Phys.
89
,
6189
(
1988
).
11.
M.
Keil
,
L. J.
Danielson
, and
P. J.
Dunlop
,
J. Chem. Phys.
94
,
296
(
1991
).
12.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 260.
13.
There is a simple program in the Appendix of Ref. 8; with C2n, ε, Rm, and the number of terms in the dispersion series as input, it will automatically print out A and b.
14.
U.
Kleinekathofer
,
K. T.
Tang
,
J. P.
Toennies
, and
C. L.
Yiu
,
J. Chem. Phys.
107
,
9502
(
1997
).
15.
K. T.
Tang
,
J. P.
Toennies
, and
C. L.
Yiu
,
Phys. Rev. Lett.
74
,
1546
(
1995
).
16.
J.
Komasa
,
J. Chem. Phys.
110
,
7909
(
1999
).
17.
J.
van de Bovenkamp
and
F. B.
van Duijneveldt
,
J. Chem. Phys.
110
,
11141
(
1999
).
18.
J. B.
Anderson
,
J. Chem. Phys.
115
,
4546
(
2001
).
19.
A. R.
Janzen
and
R. A.
Aziz
,
J. Chem. Phys.
107
,
914
(
1997
).
20.
R. A.
Aziz
and
M. J.
Slaman
,
Chem. Phys.
130
,
187
(
1989
).
21.
R. A.
Aziz
,
J. Chem. Phys.
99
,
4518
(
1993
).
22.
A. K.
Dham
,
A. R.
Allnatt
,
W. J.
Meath
, and
R. A.
Aziz
,
Mol. Phys.
67
,
1291
(
1991
).
23.
A. K.
Dham
,
W. J.
Meath
,
A. R.
Allnatt
,
R. A.
Aziz
, and
M. J.
Slaman
,
Chem. Phys.
142
,
173
(
1990
).
24.
Z. C.
Yan
,
J. F.
Babb
,
A.
Dalgarno
, and
G. W. F.
Drake
,
Phys. Rev. A
54
,
2824
(
1996
).
25.
A.
Kumar
and
W. J.
Meath
,
Mol. Phys.
54
,
823
(
1985
).
26.
A. J.
Thakkar
,
H.
Hettema
, and
P. E. S.
Wormer
,
J. Chem. Phys.
97
,
3252
(
1992
).
27.
A.
Kumar
and
W. J.
Meath
,
Can. J. Chem.
63
,
1616
(
1985
).
28.
R.
Candori
,
F.
Pirani
, and
F.
Vecchiocattivi
,
Mol. Phys.
49
,
551
(
1983
).
29.
A.
Aziz
,
U.
Buck
,
H.
Jónsson
,
J. C.
Ruig-Suárez
,
B.
Schmidt
,
G.
Scoles
,
M. J.
Slaman
, and
J.
Xu
,
J. Chem. Phys.
91
,
6477
(
1989
);
A.
Aziz
,
U.
Buck
,
H.
Jónsson
,
J. C.
Ruig-Suárez
,
B.
Schmidt
,
G.
Scoles
,
M. J.
Slaman
, and
J.
Xu
,
J. Chem. Phys.
93
,
4492
(
1990
).
30.
J. F.
Ogilvie
and
F. Y. H.
Wang
,
J. Mol. Struct.
273
,
277
(
1992
);
J. F.
Ogilvie
and
F. Y. H.
Wang
,
J. Mol. Struct.
291
,
313
(
1993
).
31.
D. A.
Barrow
,
M. J.
Slaman
, and
R. A.
Aziz
,
J. Chem. Phys.
91
,
6348
(
1989
).
32.
R. T.
Pack
,
J. J.
Valentini
,
C. H.
Becker
,
R. J.
Buiss
, and
Y. T.
Lee
,
J. Chem. Phys.
77
,
5475
(
1982
).
33.
K. T.
Tang
,
Phys. Rev.
177
,
108
(
1969
).
34.
H. L.
Kramer
and
D. R.
Herschbach
,
J. Chem. Phys.
53
,
2783
(
1970
).
35.
C. Y.
Ng
,
Y. T.
Lee
, and
J. A.
Barker
,
J. Chem. Phys.
61
,
1996
(
1974
).
36.
S. H.
Patil
,
K. T.
Tang
, and
J. P.
Toennies
,
J. Chem. Phys.
116
,
8118
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.