The broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy in the frequency domain was used to study six-wave mixing processes of simple aromatic molecules such as benzene and toluene. The six-wave mixing CARS signals were observed to have similar spectral profiles to those of the four-wave mixing CARS signals, but the peak positions were located in the overtone and the combination regions. By examining the concentration dependence, the six-wave mixing CARS signals were attributed to the so-called parallel-cascading third-order process. It is shown that the parallel-cascading process is useful for differentiating the contribution of the inhomogeneous broadening to the spectral profile.

1.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
278
,
175
(
1997
).
2.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
3.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
4.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
74
,
3061
(
1995
).
5.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
76
,
987
(
1996
).
6.
T.
Steffen
and
K.
Duppen
,
Phys. Rev. Lett.
76
,
1224
(
1996
).
7.
A.
Lau
,
M.
Pfeiffer
, and
A.
Kummrow
,
Chem. Phys. Lett.
263
,
435
(
1996
).
8.
L. J.
Muller
,
D. V.
Bout
, and
M.
Berg
,
J. Chem. Phys.
99
,
810
(
1993
).
9.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
113
,
771
(
2000
).
10.
O.
Glonzka
,
N.
Demirdoeven
,
M.
Khalil
, and
A.
Tokmakoff
,
J. Chem. Phys.
113
,
9893
(
2000
).
11.
K. J.
Kubarych
,
C. J.
Milne
,
S.
Lin
,
V.
Astinov
, and
R. J. D.
Miller
,
J. Chem. Phys.
116
,
2016
(
2002
).
12.
L. J.
Kaufman
,
J.
Heo
,
L. D.
Ziegler
, and
G. R.
Fleming
,
Phys. Rev. Lett.
88
,
207402
(
2002
).
13.
J. E.
Ivanecky
III
and
J. C.
Wright
,
Chem. Phys. Lett.
206
,
437
(
1993
).
14.
J. C.
Kirkwood
,
D. J.
Ulness
,
A. C.
Albrecht
, and
M. J.
Stimson
,
Chem. Phys. Lett.
293
,
417
(
1998
).
15.
J. C.
Kirkwood
,
A. C.
Albrecht
, and
D. J.
Ulness
,
J. Chem. Phys.
111
,
272
(
1999
).
16.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
111
,
3105
(
1999
).
17.
M.
Cho
,
K.
Okumura
, and
Y.
Tanimura
,
J. Chem. Phys.
108
,
1326
(
1998
).
18.
S.
Hahn
,
K.
Park
, and
M.
Cho
,
J. Chem. Phys.
111
,
4121
(
1999
).
19.
W.
Zhao
and
J. C.
Wright
,
Phys. Rev. Lett.
84
,
1411
(
2000
).
20.
D. J.
Ulness
,
J. C.
Kirwood
, and
A. C.
Albrecht
,
J. Chem. Phys.
108
,
3897
(
1998
).
21.
B. N.
Toleutaev
,
T.
Tahara
, and
H.
Hamaguchi
,
Appl. Phys. B: Lasers Opt.
59
,
369
(
1994
).
22.
Y.
Saito
and
H.
Hamaguchi
,
Chem. Phys. Lett.
339
,
351
(
2001
).
23.
M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1988).
24.
G. Herzberg, Infrared and Raman Spectra (Van Nostrand, New York, 1945).
25.
E. B.
Wilson
, Jr.
,
Phys. Rev.
45
,
706
(
1934
).
26.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
27.
H.
Hamaguchi
and
T. L.
Gustafson
,
Annu. Rev. Phys. Chem.
45
,
593
(
1994
).
28.
L. J.
Muller
,
D.
Van den Bout
, and
M.
Berg
,
J. Chem. Phys.
99
,
810
(
1993
).
29.
R.
Inaba
,
K.
Tominaga
,
M.
Tasumi
,
K. A.
Nelson
, and
K.
Yoshihara
,
Chem. Phys. Lett.
211
,
183
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.