We present the first calculation of time-resolved photoelectron differential cross sections for a polyatomic molecule. The calculation is based on a nonperturbative quantum mechanical theory that accounts exactly for rotations and vibrations and describes the electronic dynamics within a density functional approach. Application is made to study the dynamics of a radiationless transition, as probed by time-resolved photoelectron imaging. Specifically, we consider the ultrafast S2→S1 internal conversion of pyrazine, induced by a short excitation pulse and probed by a time-delayed ionization pulse. Through calculation of total ionization signals, photoelectron energy distributions and energy-integrated and -resolved photoelectron angular distributions, we explore the potential of time-resolved photoelectron imaging. By comparing several models of the ionization dynamics, we examine the extent to which time-resolved photoelectron imaging can provide a general probe of ultrafast nonradiative transitions.

1.
Reviews of the field of femtochemistry include A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994);
J. C.
Polanyi
and
A. H.
Zewail
,
Acc. Chem. Res.
28
,
119
(
1995
);
D.
Zhong
and
A. H.
Zewail
,
J. Phys. Chem. A
102
,
4031
(
1998
).
2.
For a review of the concept, theory and application of time-resolved differential cross sections, see
T.
Seideman
,
Annu. Rev. Phys. Chem.
53
,
41
(
2002
).
3.
S. W.
Allendorf
,
D. J.
Leahy
,
D. C.
Jacobs
, and
R. N.
Zare
,
J. Chem. Phys.
91
,
2216
(
1989
);
D. J.
Leahy
,
K. L.
Reid
,
H.
Park
, and
R. N.
Zare
,
J. Chem. Phys.
97
,
4948
(
1992
);
H.
Park
and
R. N.
Zare
,
J. Chem. Phys.
106
,
2239
(
1997
).
4.
M. P.
Strand
,
J.
Hansen
,
R.-L.
Chien
, and
R. S.
Berry
,
Chem. Phys. Lett.
59
,
205
(
1978
).
5.
G.
Leuchs
,
S. J.
Smith
,
E.
Khawaja
, and
H.
Walther
,
Opt. Commun.
31
,
313
(
1979
).
6.
K. L.
Reid
,
S. P.
Duxon
, and
M.
Towrie
,
Chem. Phys. Lett.
228
,
351
(
1994
).
7.
T.
Suzuki
,
L.
Wang
, and
H.
Kohguchi
,
J. Chem. Phys.
111
,
4859
(
1999
);
L.
Wang
,
H.
Kohguchi
, and
T.
Suzuki
,
Faraday Discuss.
113
,
37
(
1999
).
8.
J. A.
Davies
,
J. E.
LeClaire
,
R. E.
Continetti
, and
C. C.
Hayden
,
J. Chem. Phys.
111
,
1
(
1999
).
9.
For a measurement of picosecond-resolved photoelectron angular distributions, see
K. L.
Reid
,
T. A.
Field
,
M.
Towrie
, and
P.
Matousek
,
J. Chem. Phys.
111
,
1438
(
1999
).
10.
T.
Seideman
,
J. Chem. Phys.
107
,
7859
(
1997
).
11.
T.
Seideman
,
Phys. Rev. A
64
,
042504
-
1
(
2001
).
12.
S. C.
Althorpe
and
T.
Seideman
,
J. Chem. Phys.
110
,
147
(
1999
).
13.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
Chem. Phys. Lett.
302
,
363
(
1999
).
14.
T.
Seideman
and
S. C.
Althorpe
,
J. Electron. Spectrosc. Relat. Phenom.
108
,
99
(
2000
).
15.
S. C.
Althorpe
and
T.
Seideman
,
J. Chem. Phys.
113
,
7901
(
2000
).
16.
T.
Seideman
,
J. Chem. Phys.
113
,
1677
(
2000
).
17.
For early reviews about nonradiative transitions see, for instance, (a)
J.
Jortner
,
S. A.
Rice
, and
R. M.
Hochstrasser
,
Adv. Photochem.
7
,
149
(
1969
);
(b) B. R. Henry and W. Siebrand, in Molecular Luminescence, edited by E. C. Lim (Benjamin, New York, 1969), p. 423. (c) E. C. Lim, ibid., p. 469. (d) M. A. El-Sayed, ibid., p. 715;
(e) K. F. Freed, in Radiationless Processes in Molecules and Condensed Phases, edited by F. K. Fong (Springer, Berlin, 1976), p. 23.
18.
Time resolved photoelectron spectroscopy studies of radiationless transitions are reported in Refs. 28, 30,31,32,33,34,35,36,37.
19.
R. W.
Schoenlein
,
L. A.
Peteanu
,
R. A.
Mathies
, and
C. V.
Shank
,
Science
254
,
412
(
1991
).
20.
J. Jortner and M. Ratner, Molecular Electronics (Blackwell, Oxford, 1997).
21.
C. C. Hayden et al. (unpublished).
22.
W. Domcke and G. Stock, Adv. Chem. Phys., edited by I. Prigogine and S. A. Rice (Wiley, New York, 1997), Vol. 100, and references therein.
23.
C.
Woywod
,
W.
Domcke
,
A. L.
Sobolewski
, and
H.-J.
Werner
,
J. Chem. Phys.
100
,
1400
(
1994
).
24.
G.
Stock
,
C.
Woywod
,
W.
Domcke
,
T.
Swinney
, and
B. S.
Hudson
,
J. Chem. Phys.
103
,
6851
(
1995
).
25.
L.
Seidner
,
W.
Domcke
, and
W.
von Niessen
,
Chem. Phys. Lett.
205
,
117
(
1993
).
26.
M.
Seel
and
W.
Domcke
,
J. Chem. Phys.
95
,
7806
(
1991
).
27.
A.
Kühl
and
W.
Domcke
,
Chem. Phys.
259
,
227
(
2000
);
A.
Kühl
and
W.
Domcke
,
J. Chem. Phys.
116
,
263
(
2002
).
28.
V.
Stert
,
P.
Farmanara
, and
W.
Radloff
,
J. Chem. Phys.
112
,
4460
(
2000
).
29.
Y.
Suzuki
,
M.
Stener
, and
T.
Seideman
,
Phys. Rev. Lett.
89
,
233002
(
2002
).
30.
N.
Thantu
and
P. M.
Weber
,
Chem. Phys. Lett.
214
,
276
(
1993
).
31.
B.
Kim
,
C. P.
Schick
, and
P. M.
Weber
,
J. Chem. Phys.
103
,
6903
(
1995
).
32.
D. R.
Cyr
and
C. C.
Hayden
,
J. Chem. Phys.
104
,
771
(
1996
).
33.
W.
Radloff
,
V.
Stert
,
T.
Freudenberg
,
I. V.
Hertel
,
C.
Jouvet
,
C.
Dedonder-Lardeux
, and
D.
Solgadi
,
Chem. Phys. Lett.
281
,
20
(
1997
).
34.
V.
Blanchet
,
M. Z.
Zgierski
,
T.
Seideman
, and
A.
Stolow
,
Nature (London)
401
,
52
(
1999
).
35.
V.
Blanchet
,
S.
Lochbrunner
,
M.
Schmitt
,
J. P.
Shaffer
,
J. J.
Larsen
,
M. Z.
Zgierski
,
T.
Seideman
, and
A.
Stolow
,
Faraday Discuss.
115
,
33
(
2000
).
36.
M.
Tsubouchi
,
B. J.
Whitaker
,
L.
Wang
,
H.
Kohguchi
, and
T.
Suzuki
,
Phys. Rev. Lett.
86
,
4500
(
2001
).
37.
V.
Blanchet
,
M. Z.
Zgierski
, and
A.
Stolow
,
J. Chem. Phys.
114
,
1194
(
2001
);
M.
Schmitt
,
S.
Lochbrunner
,
J. P.
Shaffer
,
J. J.
Larsen
,
M. Z.
Zgierski
, and
A.
Stolow
,
J. Chem. Phys.
114
,
1206
(
2001
).
38.
R. S.
Mulliken
,
Phys. Rev.
59
,
873
(
1941
).
39.
R. N. Zare, Angular Momentum. Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
40.
F. C.
Von Der Lage
and
H. A.
Bethe
,
Phys. Rev.
71
,
612
(
1947
).
41.
P. G.
Burke
,
N.
Chandra
, and
F. A.
Gianturco
,
J. Phys. B
5
,
2212
(
1972
).
42.
N.
Chandra
,
J. Phys. B
20
,
3405
(
1987
).
43.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
44.
D.
Toffoli
,
M.
Stener
,
G.
Fronzoni
, and
P.
Decleva
,
Chem. Phys.
276
,
25
(
2002
).
45.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
46.
C. F.
Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
47.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
48.
M.
Stener
,
S.
Furlan
, and
P.
Decleva
,
J. Phys. B
33
,
1081
(
2000
).
49.
S. J. A.
van Gisbergen
,
V. P.
Osinga
,
O. V.
Gritsenko
,
R.
van Leeuwen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
3142
(
1996
).
50.
M.
Brosolo
and
P.
Decleva
,
Chem. Phys.
159
,
185
(
1992
).
51.
A. R.
Barnett
,
Comput. Phys. Commun.
27
,
147
(
1982
).
52.
P.
Weber
and
J. R.
Reimers
,
J. Phys. Chem. A
103
,
9830
(
1999
).
53.
J. J.
Larsen
,
K.
Hald
,
N.
Bjerre
,
H.
Stapelfeldt
, and
T.
Seideman
,
Phys. Rev. Lett.
85
,
2470
(
2000
).
54.
J. A.
Davies
,
R. E.
Continetti
,
D. W.
Chandler
, and
C. C.
Hayden
,
Phys. Rev. Lett.
84
,
5983
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.