The vacuum ultraviolet pulsed field ionization (PFI)-photoelectron (PFI-PE) spectrum of CO2 has been measured in the energy region of 19.0–20.0 eV. The PFI-PE vibrational bands resolved for CO2+(C 2Σg+) are overwhelmingly dominated by the origin band along with weak vibrational bands corresponding to excitations of the ν1+ (symmetric stretching), ν2+ (bending), and ν3+ (antisymmetric stretching) modes. The simulation of the rotational contour resolved in the origin PFI-PE band yields a value of 19.3911±0.0005 eV for the ionization energy of CO2 to form CO2+(C 2Σg+). A PFI-PE peak is found to coincide with each of the 0 K dissociation thresholds for the formation of O+(4S)+CO(X 1Σ+) and CO+(X 2Σ+)+O(3P). This observation is tentatively interpreted to result from the lifetime switching effect, arising from the prompt dissociation of excited CO2 in high-n(n⩾100) Rydberg states prior to PFI. We have also examined the decay pathways for state-selected CO2+ in the internal energy range of 5.2–6.2 eV using the PFI-PE-photoion coincidence scheme. The coincidence TOF data show unambiguously the formation of O+(4S)+CO(X 1Σ+=0,1) and CO+(X 2Σ++=0,1)+O(3P). Analysis of the kinetic energy releases of fragment ions suggests that the dissociation of excited CO2+ involved is nonstatistical and proceeds with an impulsive mechanism. Potential energy functions (PEFs) for the CO2+(C 2Σg+) state and the lowest quartet states of CO2+, together with their spin–orbit interactions, have been calculated using the complete active space self-consistent field and internal contracted multireference configuration interaction methods. Based on these PEFs, vibrational levels for CO2+(C 2Σg+) have been also calculated using a variational approach. With the aid of these theoretical calculations, vibrational bands resolved in the PFI-PE spectrum for CO2+(C 2Σg+) have been satisfactorily assigned, yielding a ν3+ value of 2997 cm−1. The theoretical calculation also provides a rationalization that the predissociation for CO2+(C 2Σg+) to form O+(4S)+CO(X 1Σ+) and CO+(X 2Σ+)+O(3P) most likely proceeds via the repulsive a 4Σg and b 4Πu (or B14 in a bent geometry) states.

1.
S.
Mrozowski
,
Phys. Rev.
60
,
730
(
1941
);
S.
Mrozowski
,
Phys. Rev.
62
,
270
(
1942
);
S.
Mrozowski
,
Phys. Rev.
72
,
682
(
1947
);
S.
Mrozowski
,
Phys. Rev.
72
,
691
(
1947
).
2.
Y.
Tanaka
and
M.
Ogawa
,
Can. J. Phys.
40
,
879
(
1962
).
3.
D.
Gauyacq
,
M.
Horani
,
S.
Leach
, and
J.
Rostas
,
Can. J. Phys.
53
,
2040
(
1975
).
4.
D.
Gauyacq
,
C.
Larcher
, and
J.
Rostas
,
Can. J. Phys.
57
,
1634
(
1979
).
5.
J.
Rostas
and
R. P.
Tuckett
,
J. Mol. Spectrosc.
96
,
77
(
1982
).
6.
M. A.
Johnson
,
J.
Rostas
, and
R. N.
Zare
,
Chem. Phys. Lett.
92
,
225
(
1982
).
7.
M. A.
Johnson
,
R. N.
Zare
,
J.
Rostas
, and
S.
Leach
,
J. Chem. Phys.
80
,
2407
(
1984
).
8.
K.
Kawaguchi
,
C.
Yamada
, and
E.
Hirota
,
J. Chem. Phys.
82
,
1174
(
1985
).
9.
T. J.
Sears
,
Mol. Phys.
59
,
259
(
1986
).
10.
C.
Cossart-Magos
,
M.
Jungen
, and
F.
Launay
,
Mol. Phys.
61
,
1077
(
1987
).
11.
M. A.
Johnson
and
J.
Rostas
,
Mol. Phys.
85
,
839
(
1995
).
12.
D. W.
Turner
and
D. P.
May
,
J. Chem. Phys.
46
,
1156
(
1967
).
13.
J. H. D.
Eland
and
C. J.
Danby
,
Int. J. Mass Spectrom. Ion Phys.
1
,
111
(
1968
).
14.
J. E.
Collin
and
P.
Natalis
,
Int. J. Mass Spectrom. Ion Phys.
1
,
121
(
1968
).
15.
C. R.
Brundle
and
D. W.
Turner
,
Int. J. Mass Spectrom. Ion Phys.
2
,
195
(
1969
).
16.
P.
Natalis
,
J.
Delwiche
, and
J. E.
Collin
,
Faraday Discuss. Chem. Soc.
54
,
98
(
1972
).
17.
J. L.
Bahr
,
A. J.
Blake
,
J. H.
Carver
,
J. L.
Gardner
, and
V.
Kumar
,
J. Quant. Spectrosc. Radiat. Transf.
12
,
59
(
1972
).
18.
T. A.
Carlson
and
G. E.
McGuire
,
J. Electron Spectrosc. Relat. Phenom.
1
,
209
(
1972
/1973).
19.
J. L.
Gardner
and
J. A. R.
Samson
,
J. Electron Spectrosc. Relat. Phenom.
2
,
259
(
1973
).
20.
S.
Katsumata
,
Y.
Achiba
, and
K.
Kimura
,
J. Electron Spectrosc. Relat. Phenom.
17
,
229
(
1979
).
21.
A. W.
Potts
and
G. H.
Fattahallah
,
J. Phys. B
13
,
2545
(
1980
).
22.
J.
Kreile
and
A.
Schweig
,
J. Electron Spectrosc. Relat. Phenom.
20
,
191
(
1980
).
23.
I.
Reineck
,
C.
Nohre
,
R.
Maripuu
,
P.
Lodin
,
S. H.
Al-Shamma
,
H.
Veenhuizen
,
L.
Karlsson
, and
K.
Siegbahn
,
Chem. Phys.
78
,
311
(
1983
).
24.
B.
Kovač
,
J. Chem. Phys.
78
,
1684
(
1983
).
25.
B.
Wannberg
,
H.
Veenhuizen
,
L.
Mattsson
,
K.-E.
Norell
,
L.
Karlsson
, and
K.
Siegbahn
,
J. Phys. B
17
,
L259
(
1984
).
26.
H.
Veenhuizen
,
B.
Wannberg
,
L.
Mattsson
,
K.-E.
Norell
,
C.
Nohre
,
L.
Karlsson
, and
K.
Siegbahn
,
J. Electron Spectrosc. Relat. Phenom.
41
,
205
(
1986
).
27.
M.-J.
Hubin-Franskin
,
J.
Delwiche
, and
P.-M.
Guyon
,
Z. Phys. D: At., Mol. Clusters
5
,
203
(
1987
).
28.
L.-S.
Wang
,
J. E.
Reutt
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Electron Spectrosc. Relat. Phenom.
47
,
167
(
1988
).
29.
P.
Baltzer
,
F. T.
Chau
,
J. H. D.
Eland
,
L.
Karlsson
,
M.
Lundqvist
,
J.
Rostas
,
K. Y.
Tam
,
H.
Veenhuizen
, and
B.
Wannberg
,
J. Chem. Phys.
104
,
8922
(
1996
).
30.
T. A.
Carlson
,
M. O.
Krause
,
F. A.
Grimm
,
J. D.
Allen
,
D.
Mehaffy
,
P. R.
Keller
, and
J. W.
Taylor
,
Phys. Rev. A
23
,
3316
(
1981
).
31.
F. A.
Grimmer
,
J. D.
Allen
,
T. A.
Carlson
,
M. O.
Krause
,
D.
Mehaffy
,
P. R.
Keller
, and
J. W.
Taylor
,
J. Chem. Phys.
75
,
92
(
1981
).
32.
P.
Roy
,
R. J.
Bartlett
,
W. J.
Trela
,
T. A.
Ferrett
,
A. C.
Parr
,
S. H.
Southworth
,
J. E.
Hardis
,
V.
Schmidt
, and
J. L.
Dehmer
,
J. Chem. Phys.
94
,
949
(
1991
).
33.
C. F.
Batten
,
J. A.
Taylor
, and
G. G.
Meisels
,
J. Chem. Phys.
65
,
3316
(
1976
).
34.
T.
Baer
and
P. M.
Guyon
,
J. Chem. Phys.
85
,
4765
(
1986
).
35.
H. H.
Fielding
,
T. P.
Softley
, and
F.
Merkt
,
Chem. Phys.
155
,
257
(
1991
).
36.
F.
Merkt
,
S. R.
Mackenzie
,
R. J.
Rednall
, and
T. P.
Softley
,
J. Chem. Phys.
99
,
8430
(
1993
).
37.
R. T.
Wiedmann
,
M. G.
White
,
H.
Lefebvre-Brion
, and
C.
Cossart-Magos
,
J. Chem. Phys.
103
,
10417
(
1995
).
38.
V. H.
Dibeler
and
J. A.
Walker
,
J. Opt. Soc. Am.
57
,
1007
(
1967
).
39.
K. E.
McCulloh
,
J. Chem. Phys.
59
,
4250
(
1973
).
40.
G. R.
Parr
and
J. W.
Taylor
,
Int. J. Mass Spectrom. Ion Phys.
14
,
467
(
1974
).
41.
P. L.
Kronebusch
and
J.
Berkowitz
,
Int. J. Mass Spectrom. Ion Phys.
22
,
283
(
1976
).
42.
R.
Frey
,
B.
Gotchev
,
O. F.
Kalman
,
W. B.
Peatman
,
H.
Pollak
, and
E. W.
Schlag
,
Chem. Phys.
21
,
89
(
1977
).
43.
J. H. D.
Eland
and
J.
Berkowitz
,
J. Chem. Phys.
67
,
2782
(
1977
).
44.
M.
Wu
,
D. P.
Taylor
, and
P. M.
Johnson
,
J. Chem. Phys.
94
,
7596
(
1991
).
45.
M.
Wu
,
D. P.
Taylor
, and
P. M.
Johnson
,
J. Chem. Phys.
95
,
761
(
1991
).
46.
D. P.
Taylor
and
P. M.
Johnson
,
J. Chem. Phys.
98
,
1810
(
1993
).
47.
S.
Chin
and
W. B.
Person
,
J. Phys. Chem.
88
,
553
(
1984
).
48.
F. A.
Grimm
and
M.
Larsson
,
Phys. Scr.
29
,
337
(
1984
).
49.
M.
Brommer
,
G.
Chambaud
,
E.-A.
Reinsch
,
P.
Rosmus
,
A.
Spielfieldel
,
N.
Feautrier
, and
H.-J.
Werner
,
J. Chem. Phys.
94
,
8070
(
1991
).
50.
M. Th.
Praet
,
J. C.
Lorquet
, and
G.
Raseev
,
J. Chem. Phys.
77
,
4611
(
1982
).
51.
G.
Chambaud
,
W.
Gabriel
, and
P.
Rosmus
,
J. Phys. Chem.
96
,
3285
(
1992
).
52.
R.
Polák
,
M.
Hochlaf
,
M.
Levinas
,
G.
Chambaud
, and
P.
Rosmus
,
Spectrochim. Acta, Part A
55
,
447
(
1999
).
53.
K.
Takeshita
,
N.
Shida
, and
E.
Miyoshi
,
J. Chem. Phys.
112
,
10838
(
2000
).
54.
R.
Bombach
,
J.
Dannacher
,
J.-P.
Stadelmann
, and
J. C.
Lorquet
,
J. Chem. Phys.
79
,
4214
(
1983
).
55.
J. H. D.
Eland
,
Int. J. Mass Spectrom. Ion Phys.
9
,
397
(
1972
).
56.
A.
Crowe
and
J. W.
McConkey
,
J. Phys. B
7
,
349
(
1974
).
57.
N.
Bussières
and
P.
Marmet
,
Can. J. Phys.
55
,
1889
(
1977
).
58.
A. P.
Hitchcock
,
C. E.
Brion
, and
M. J.
Van Der Wiel
,
Chem. Phys.
45
,
461
(
1980
).
59.
T. S.
Wauchop
and
H. P.
Broida
,
J. Geophys. Res.
76
,
21
(
1971
).
60.
L. C.
Lee
and
D. L.
Judge
,
J. Chem. Phys.
57
,
4443
(
1972
).
61.
G. Herzberg, Molecular Spectra and Molecular Structure III, Electronic Spectra and Electronic Structure of Polyatomic Molecules (van Nostrand, Princeton, 1966).
62.
C.-W.
Hsu
,
K. T.
Lu
,
M.
Evans
,
Y. J.
Chen
,
C. Y.
Ng
, and
P.
Heimann
,
J. Chem. Phys.
105
,
3950
(
1996
).
63.
P. A.
Heimann
,
M.
Koike
,
C.-W.
Hsu
,
D.
Blank
,
X. M.
Yang
,
A. G.
Suits
,
Y. T.
Lee
,
M.
Evans
,
C. Y.
Ng
,
C.
Flaim
, and
H. A.
Padmore
,
Rev. Sci. Instrum.
68
,
1945
(
1997
).
64.
C.-W.
Hsu
,
M.
Evans
,
C. Y.
Ng
, and
P.
Heimann
,
Rev. Sci. Instrum.
68
,
1694
(
1997
).
65.
G. K.
Jarvis
,
K.-M.
Weitzel
,
M.
Malow
,
T.
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Rev. Sci. Instrum.
70
,
3892
(
1999
).
66.
J.
Liu
,
W.
Chen
,
C.-W.
Hsu
,
M.
Hochlaf
,
M.
Evans
,
S.
Stimson
, and
C. Y.
Ng
,
J. Chem. Phys.
112
,
10767
(
2000
).
67.
J.
Liu
,
M.
Hochlaf
and
C. Y.
Ng
,
J. Chem. Phys.
113
,
7988
(
2000
).
68.
C.-W.
Hsu
,
M.
Evans
,
S.
Stimson
,
C. Y.
Ng
, and
P.
Heimann
,
Chem. Phys.
231
,
121
(
1998
).
69.
S.
Stimson
,
Y.-J.
Chen
,
M.
Evans
,
C.-L.
Liao
,
C. Y.
Ng
,
C.-W.
Hsu
, and
P.
Heimann
,
Chem. Phys. Lett.
289
,
507
(
1998
).
70.
R. B.
Carirns
and
J. A. R.
Samson
,
J. Opt. Soc. Am.
56
,
1568
(
1966
).
71.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
72.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
73.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
74.
MOLPRO is a package of ab initio programs written by H. J. Werner and P. J. Knowles with contributions from R. D. Amos, A. Berning, D. L. Cooper et al. For further details, see http://www.tc.bham.ac.uk/molpro
75.
S.
Carter
and
N. C.
Handy
,
Comput. Phys. Rep.
5
,
117
(
1987
).
76.
S.
Stimson
,
M.
Evans
,
C. Y.
Ng
,
C.-W.
Hsu
,
P.
Heimann
,
C.
Destandau
,
G.
Chambaud
, and
P.
Rosmus
,
J. Chem. Phys.
108
,
6205
(
1998
).
77.
M.
Brommer
and
P.
Rosmus
,
J. Chem. Phys.
98
,
7746
(
1993
).
78.
H.
Gritli
,
G.
Chambaud
,
M.
Brommer
, and
P.
Rosmus
,
J. Chim. Phys. Phys.-Chim. Biol.
91
,
151
(
1994
).
79.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
80.
M.
Hochlaf
,
G.
Chambaud
,
P.
Rosmus
,
T.
Andersen
, and
H.-J.
Werner
,
J. Chem. Phys.
110
,
11835
(
1999
).
81.
D.
Panten
,
G.
Chambaud
,
P.
Rosmus
, and
P. J.
Knowles
,
Chem. Phys. Lett.
311
,
390
(
1999
).
82.
A. D.
Buckingham
,
B. J.
Orr
, and
J. M.
Sichel
,
Philos. Trans. R. Soc. London, Ser. A
268
,
147
(
1970
).
83.
G. Herzberg, Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules (Van Nostrand, Princeton, 1950).
84.
G. K.
Jarvis
,
D. P.
Seccombe
, and
R. P.
Tuckett
,
Chem. Phys. Lett.
315
,
287
(
1999
).
85.
K.-M.
Weitzel
,
G.
Jarvis
,
M.
Malow
,
T.
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Phys. Rev. Lett.
86
,
3526
(
2001
).
86.
C. Y.
Ng
,
Annu. Rev. Phys. Chem.
53
,
101
(
2002
).
87.
F.
Merkt
and
T. P.
Softley
,
Int. Rev. Phys. Chem.
12
,
205
(
1993
).
88.
W.
Domcke
,
Phys. Scr.
19
,
11
(
1979
).
89.
C. E.
Klots
,
J. Chem. Phys.
58
,
5364
(
1973
).
90.
K.-M.
Weitzel
and
J.
Mähnert
,
Int. J. Mass. Spectrom.
214
,
175
(
2002
).
91.
K. E.
Holdy
,
L. C.
Klotz
, and
K. R.
Wilson
,
J. Chem. Phys.
52
,
4588
(
1970
).
92.
G. E.
Busch
and
K. R.
Wilson
,
J. Chem. Phys.
56
,
3626
(
1972
).
93.
M. Richard-Viard, O. Dutuit, A. Amarkhodja, and P.-P. Guyon, in Photophysics and Photochemistry Above 6 eV, edited by F. Lahmani (Elsevier, Amsterdam, 1985), p. 153.
This content is only available via PDF.
You do not currently have access to this content.