Fine theoretical spectroscopy has been presented by the SAC-CI (symmetry adapted cluster-configuration interaction) general-R method for the outer- and inner-valence ionization spectra of CS2 and OCS. The SAC-CI general-R method simulated the experimental spectra quite accurately and the detailed assignments of the satellite peaks were given. For CS2, four outer-valence satellites Πu2 states were calculated, one of which was attributed to the recently observed peak (1). Numerous Σu+2 and Σg+2 satellite peaks were obtained in the inner-valence region and some of them were dominantly described by triple electron processes; the quadruple R-operators were found to be important for describing these states in the general-R method. For OCS, the relative position of the main peaks was correctly reproduced and the higher R-operators were found to be important for the ordering of A and B states. In the energy region of 24–36 eV, continuous spectra of numerous Σ+2 satellites were obtained, which reproduced the feature of the photoelectron spectrum.

1.
C. J.
Allan
,
U.
Gelius
,
D. A.
Allison
,
G.
Johansson
,
H.
Siegbahn
, and
K.
Siegbahn
,
J. Electron Spectrosc. Relat. Phenom.
1
,
131
(
1972
).
2.
A. W.
Potts
and
T. A.
Williams
,
J. Electron Spectrosc. Relat. Phenom.
3
,
3
(
1974
).
3.
J.
Schirmer
,
W.
Domcke
,
L. S.
Cederbaum
,
W.
von Niessen
, and
L.
Asbrink
,
Chem. Phys. Lett.
61
,
30
(
1979
).
4.
F.
Carnovale
,
M. G.
White
, and
C. E.
Brion
,
J. Electron Spectrosc. Relat. Phenom.
24
,
63
(
1981
).
5.
R. T.
Leung
and
C. E.
Brion
,
Chem. Phys.
82
,
87
(
1983
).
6.
M. J.
Hubin-Franskin
,
J.
Delwiche
,
P.
Natalis
,
G.
Caprace
, and
D.
Roy
,
J. Electron Spectrosc. Relat. Phenom.
18
,
295
(
1980
).
7.
P.
Roy
,
I.
Nenner
,
P.
Millie
,
P.
Morin
, and
D.
Roy
,
J. Chem. Phys.
87
,
2536
(
1987
).
8.
P.
Baltzer
,
B.
Wannberg
,
M.
Lundquvist
,
L.
Karlsson
,
D. M. P.
Holland
,
M. A.
MacDonald
,
M. A.
Hayes
,
P.
Tomasello
, and
W.
von Niessen
,
Chem. Phys.
202
,
185
(
1996
).
9.
H.
Nakatsuji
,
Chem. Phys.
76
,
283
(
1983
).
10.
L. S.
Wang
,
J. E.
Reutt
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Electron Spectrosc. Relat. Phenom.
47
,
167
(
1988
).
11.
P.
Millie
,
I.
Nenner
,
P.
Archirel
,
P.
Lablanquie
,
P.
Fournier
, and
J. H. D.
Eland
,
J. Chem. Phys.
84
,
1259
(
1986
).
12.
J. P. D.
Cook
,
M. G.
White
,
C. E.
Brion
,
W.
Domcke
,
L. S.
Cederbaum
,
J.
Schirmer
, and
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
22
,
261
(
1981
).
13.
M. G.
White
,
K. T.
Leung
, and
C. E.
Brion
,
J. Electron Spectrosc. Relat. Phenom.
23
,
127
(
1981
).
14.
K. T.
Leung
and
C. E.
Brion
,
Chem. Phys.
96
,
241
(
1985
).
15.
D. M. P.
Holland
and
M. A.
Macdonald
,
Chem. Phys.
144
,
279
(
1990
).
16.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
17.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
).
18.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
).
19.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
20.
H. Nakatsuji, Computational Chemistry-Review of Current Trends (World Scientific, Singapore, 1997), Vol. 2, pp. 62–124.
21.
H.
Nakatsuji
,
Acta Chim. Hung.
129
,
719
(
1992
).
22.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
23.
H.
Nakatsuji
,
O.
Kitao
, and
T.
Yonezawa
,
J. Chem. Phys.
83
,
723
(
1985
).
24.
H.
Nakatsuji
and
S.
Saito
,
J. Chem. Phys.
91
,
6205
(
1989
).
25.
H.
Nakatsuji
,
M.
Ehara
,
M. H.
Palmer
, and
M. F.
Guest
,
J. Chem. Phys.
97
,
2561
(
1992
).
26.
H.
Nakatsuji
and
M.
Ehara
,
J. Chem. Phys.
101
,
7658
(
1994
).
27.
H.
Nakatsuji
,
J.
Hasegawa
, and
M.
Hada
,
J. Chem. Phys.
104
,
2321
(
1996
).
28.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
29.
H.
Nakatsuji
,
J. Chem. Phys.
83
,
713
(
1985
).
30.
H.
Nakatsuji
,
J. Chem. Phys.
83
,
5743
(
1985
).
31.
H.
Nakatsuji
,
J. Chem. Phys.
94
,
6716
(
1991
).
32.
M.
Ehara
and
H.
Nakatsuji
,
Chem. Phys. Lett.
282
,
347
(
1998
).
33.
J.
Hasegawa
,
M.
Ehara
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
230
,
23
(
1998
).
34.
M.
Ehara
,
P.
Tomasello
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Theor. Chem. Acc.
102
,
161
(
1999
).
35.
M.
Ehara
and
H.
Nakatsuji
,
Spectrochim. Acta, Part A
55
,
487
(
1998
).
36.
M.
Ehara
,
M.
Ishida
, and
H.
Nakatsuji
,
J. Chem. Phys.
114
,
8990
(
2001
).
37.
M.
Ishida
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
116
,
1934
(
2002
).
38.
M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews in Modern Quantum Chemistry, edited by K. D. Sen (World Scientific, Singapore, 2002), pp. 293-319.
39.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
40.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
41.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
42.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
43.
S.
Süzer
,
S. T.
Lee
, and
D. A.
Shirley
,
Phys. Rev. A
13
,
1842
(
1976
).
44.
R. I.
Martin
and
D. A.
Shirley
,
J. Chem. Phys.
64
,
3685
(
1976
).
45.
H. Nakatsuji, M. Hada, M. Ehara, J. Hasegawa, T. Nakajima, H. Nakai, O. Kitao, and K. Toyota, SAC/SAC-CI program system (SAC-CI96) for calculating ground, excited, ionized, and electron-attached states having singlet to septet spin multiplicities (1996).
46.
M. J. Frisch et al. GAUSSIAN 98, Revision A.5, Gaussian, Inc., Pittsburgh PA, 1998.
This content is only available via PDF.
You do not currently have access to this content.