We have recorded the Fourier-transform infrared (FTIR) spectrum of the ν3 fundamental band of WF6 in a continuous supersonic jet expansion with an instrumental bandwidth of 0.0024 cm−1 (FWHM, full width at half maximum, unapodized), using a Bomem DA.002 spectrometer. Some parts of this band have also been recorded with 0.0007 cm−1 bandwidth using a diode laser spectrometer combined with a pulsed slit jet expansion. A multiple-pass arrangement has been used for the slit jet to observe low-intensity lines. In each case, we have used a WF6:He mixture with a seeding ratio 1:3 leading to a rotational temperature of ca. 50 K. This work extends the previous investigation of Takami and Kuze [J. Chem. Phys. 80, 5994 (1984)] to much higher J transitions. In both P and R branches, rotational lines have been recorded for J up to 46–48. We have used a tensorial Hamiltonian adapted to the group chain O(3)⊃Oh and developed to the third order for the analysis of the spectra. A least-squares fit for each of the four main isotopic species: 182WF6,183WF6,184WF6, and 186WF6 results in band centers (in this order) 714.538 19, 714.214 06, 713.895 44, and 713.266 21 cm−1. We report furthermore first results on the high-resolution spectra of ν3 of ReF6, which exhibits a fourfold degenerate electronic ground state of Gg species in the OhS group. Supersonic jet-FTIR spectra show a moderately structured relatively broad band, whereas the diode laser spectroscopy of the seeded jet in the range 708–733 cm−1 results in line resolved spectra of high complexity. A preliminary analysis is discussed, while a complete analysis still represents an appreciable challenge.

1.
J.
Gaunt
,
Trans. Faraday Soc.
49
,
1122
(
1953
).
2.
D.
Travis
,
J.
McGurk
,
D.
McKeown
, and
R.
Denning
,
Chem. Phys. Lett.
45
,
287
(
1977
).
3.
G.
Baronov
,
A.
Britov
,
S.
Karavaev
,
A.
Karachevskii
,
S.
Kulikov
,
A.
Merzlyakov
,
S.
Sivachenko
, and
Y. I.
Shcherbina
,
Sov. J. Quantum Electron.
11
,
947
(
1981
).
4.
M.
Takami
and
H.
Kuze
,
J. Chem. Phys.
80
,
5994
(
1984
);
see also
Y.
Mitzugai
,
H.
Kuze
,
H.
Jones
, and
M.
Takami
,
Appl. Phys. B: Photophys. Laser Chem.
32
,
43
(
1983
).
5.
R.
McDowell
and
L.
Asprey
,
J. Mol. Spectrosc.
45
,
491
(
1973
).
6.
J.
Gaunt
,
Trans. Faraday Soc.
50
,
209
(
1954
).
7.
H.
Claassen
,
J.
Malm
, and
H.
Selig
,
J. Chem. Phys.
36
,
2890
(
1962
).
8.
I.
Levin
,
S.
Abramowitz
, and
A.
Müller
,
J. Mol. Spectrosc.
41
,
415
(
1972
).
9.
G.
Cady
and
B.
Hargreaves
,
J. Chem. Soc.
1961
,
1563
.
10.
C.
Bernard
,
R.
Madar
, and
Y.
Pauleau
,
Solid State Technol.
2
,
79
(
1989
).
11.
N.
Desatnik
and
B.
Thompson
,
J. Electrochem. Soc.
141
,
3532
(
1994
).
12.
M.
Quack
,
Infrared Phys.
29
,
441
(
1989
);
M.
Quack
,
J. Chem. Phys.
69
,
1282
(
1978
).
13.
A. N.
Halliday
,
Contemp. Phys.
38
,
103
(
1997
).
14.
D. C.
Lee
and
A. N.
Halliday
,
Nature (London)
378
,
771
(
1995
).
15.
D. C.
Lee
and
A. N.
Halliday
,
Science
274
,
1876
(
1996
).
16.
M.
Schädel
,
W.
Brüchle
,
R.
Dressler
et al.,
Nature (London)
388
,
55
(
1997
).
17.
C.
Nash
and
B.
Bursten
,
J. Am. Chem. Soc.
121
,
10830
(
1999
).
18.
K.
Tanner
and
A.
Duncan
,
J. Am. Chem. Soc.
73
,
1164
(
1951
).
19.
H.
Claassen
and
H.
Selig
,
Isr. J. Chem.
7
,
499
(
1969
).
20.
H.
Claassen
,
G.
Goodman
,
J.
Holloway
, and
H.
Selig
,
J. Chem. Phys.
53
,
341
(
1970
).
21.
D. Jackson, Informal report LA-6025-MS, Los Alamos National Laboratory.
22.
L. Roberts, The properties of C.V.D. deposits of W and W–Re alloys, High temperature materials, 6th Plansee seminar, June 1968, Reutte, Austria, 1969.
23.
Y.
Lakhotkin
and
A.
Krasovskiy
,
Russ. Metall.
1
,
21
(
1983
).
24.
M.
Pons
,
A.
Benezech
,
P.
Huguet
,
R.
Gaufres
,
P.
Diez
, and
J.
Lafforet
,
J. Chem. Vap. Deposition
2
,
135
(
1993
).
25.
W.
Moffit
,
G.
Goodman
,
M.
Fred
, and
B.
Weinstock
,
Mol. Phys.
2
,
109
(
1959
).
26.
J.
Brand
,
G.
Goodman
, and
B.
Weinstock
,
J. Mol. Spectrosc.
37
,
161
(
1971
).
27.
R.
McDiarmid
,
J. Mol. Spectrosc.
38
,
495
(
1971
).
28.
J.
Holloway
,
G.
Stanger
,
E.
Hope
,
W.
Levason
, and
J.
Ogden
,
J. Chem. Educ.
1988
,
1341
.
29.
M.
Rotger
,
V.
Boudon
, and
H.
Selig
,
Spectrochim. Acta, Part A
55
,
1575
,
734
(
1999
).
30.
V.
Boudon
and
F.
Michelot
,
J. Mol. Spectrosc.
165
,
554
(
1994
).
31.
V. Boudon, Y. He, U. Schmitt, M. Quack, and M. Rotger, in 15th Colloquium on High Resolution Molecular Spectroscopy (Glasgow, United Kingdom, 1997);
V. Boudon, M. Rotger, Y. He, U. Schmitt, and M. Quack, in 16th Colloquium on High Resolution Molecular Spectroscopy (Dijon, France, 1999).
32.
A.
Amrein
,
M.
Quack
, and
U.
Schmitt
,
J. Phys. Chem.
92
,
5455
(
1988
).
33.
M.
Quack
,
Annu. Rev. Phys. Chem.
41
,
839
(
1990
).
34.
H.
Hollenstein
,
M.
Quack
, and
E.
Richard
,
Chem. Phys. Lett.
222
,
176
(
1994
).
35.
S.
Yamamoto
,
R.
Kuwabara
,
M.
Takami
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
115
,
333
(
1986
).
36.
G. Guelachvili and K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, FL, 1986).
37.
J.-P. Champion, M. Loëte, and G. Pierre, in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, edited by K. N. Rao and A. Weber (Academic, San Diego, CA, 1992), pp. 339–422.
38.
J.
Moret-Bailly
,
Can. J. Phys.
15
,
237
(
1961
).
39.
A.
Robiette
,
D.
Gray
, and
F.
Briss
,
Mol. Phys.
32
,
1591
(
1976
).
40.
M.
Terki-Hassaine
,
G.
Pierre
,
H.
Bürger
, and
H.
Willner
,
J. Mol. Spectrosc.
185
,
93
(
1997
).
41.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
42.
M.
Quack
,
Mol. Phys.
34
,
477
(
1977
).
43.
V. Boudon, M. Rey, M. Rotger, M. Loëte, H. Hollenstein, and M. Quack (unpublished).
44.
J.
Champion
,
G.
Pierre
,
F.
Michelot
, and
J.
Moret-Bailly
,
Can. J. Phys.
55
,
512
(
1977
).
45.
C.
Cantrell
and
H.
Galbraith
,
J. Mol. Spectrosc.
58
,
158
(
1975
).
46.
H.
Berger
,
J. Phys. (France)
38
,
1371
(
1977
).
47.
V.
Boudon
,
F.
Michelot
, and
J.
Moret-Bailly
,
J. Mol. Spectrosc.
166
,
449
(
1994
).
48.
M.
Kimura
,
V.
Schomaker
,
D.
Smith
, and
B.
Weinstock
,
J. Chem. Phys.
48
,
4001
(
1968
).
49.
W.
Harter
and
C.
Patterson
,
J. Chem. Phys.
66
,
4872
(
1977
).
50.
W.
Harter
and
C.
Patterson
,
J. Chem. Phys.
66
,
4886
(
1977
).
51.
W.
Harter
,
Comput. Phys. Rep.
8
,
319
(
1988
).
52.
W. G.
Harter
,
H. W.
Galbraith
, and
C. W.
Patterson
,
J. Chem. Phys.
69
,
4888
(
1978
).
53.
W. G.
Harter
,
C. W.
Patterson
, and
H. W.
Galbraith
,
J. Chem. Phys.
69
,
4896
(
1978
).
54.
C. W.
Patterson
,
H. W.
Galbraith
,
B. J.
Krohn
, and
W. G.
Harter
,
J. Mol. Spectrosc.
77
,
457
(
1979
).
55.
G.
Dhont
,
D.
Sadovskiı́
,
B.
Zhilinskiı́
, and
V.
Boudon
,
J. Mol. Spectrosc.
201
,
95
(
2001
).
56.
Ch.
Van-Hecke
,
D.
Sadovskiı́
,
B.
Zhilinskiı́
, and
V.
Boudon
,
Eur. Phys. J. D
17
,
13
(
2001
).
57.
V.
Boudon
,
H.
Bürger
, and
E. B.
Mkadmi
,
J. Mol. Spectrosc.
206
,
172
(
2001
).
58.
B.
Bobin
and
K.
Fox
,
J. Phys. (Paris)
34
,
571
(
1973
).
59.
D.
Lupo
and
M.
Quack
,
Chem. Rev.
1987
,
87
.
60.
M.
Quack
,
Infrared Phys. Technol.
36
,
365
(
1995
).
61.
M.
Rey
,
V.
Boudon
,
M.
Loëte
, and
F.
Michelot
,
J. Mol. Spectrosc.
204
,
106
(
2000
).
62.
M.
Hippler
and
M.
Quack
.
J. Chem. Phys.
116
,
6045
(
2002
).
63.
M.
Hippler
and
M.
Quack
,
Chem. Phys. Lett.
314
,
273
(
1999
).
64.
J. C. D.
Brand
,
G. L.
Goodman
, and
B.
Weinstock
,
J. Mol. Spectrosc.
38
,
445
(
1971
).
65.
G. R.
Meredith
,
J. D.
Webb
, and
E. R.
Bernstein
,
Mol. Phys.
34
,
995
(
1977
).
66.
H. H.
Claassen
and
H.
Selig
,
Isr. J. Chem.
7
,
499
(
1969
);
H. H.
Claassen
,
G. L.
Goodman
,
J. H.
Holloway
, and
H.
Selig
,
J. Chem. Phys.
53
,
341
(
1970
).
67.
A.
Bakasov
,
T.-K.
Ha
, and
M.
Quack
,
J. Chem. Phys.
109
,
7263
(
1998
).
68.
R.
Berger
and
M.
Quack
,
J. Chem. Phys.
112
,
3148
(
2000
).
69.
M. J. M.
Pepper
,
I.
Shavitt
,
P.
Von Ragué Schleyer
,
M. N.
Glukhovtsev
,
R.
Janoschek
, and
M.
Quack
,
J. Comput. Chem.
16
,
207
(
1995
).
70.
See EPAPS Document No. E-JCPSA6-116-005222 for four tables contain-ing the observed and calculated transition wave numbers for WF6 (Table I: 182WF6, Table II: 183WF6, Table III: 184WF6, Table IV: 186WF6).
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.