In this paper we present a new approach to simulation methods for classical statistical mechanics relying on a field-theoretical formalism. It is based on applying the complex Hubbard–Stratonovich transformation to the canonical and grand-canonical partition function, which allows one to reexpress their particle representation in terms of a functional integral over a fluctuating auxiliary field. The thermodynamic averages from the resulting field representations can then be calculated with a conventional Monte Carlo algorithm. We explored the applicability of the auxiliary field methodology for both the canonical and grand-canonical ensemble using a system of particles interacting through a purely repulsive Gaussian pair potential in a broad range of external parameters. In the grand-canonical case this technique represents an alternative to standard grand-canonical Monte Carlo methods. Generally providing a framework for simulating classical particle systems within a continuum formalism can be useful for multiscale modeling where the field or continuum description naturally appears within quantum mechanics on smaller length scales and within classical mechanics on larger ones.

1.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
2.
D.
Remler
and
P.
Madden
,
Mol. Phys.
70
,
921
(
1990
).
3.
G. E.
Norman
and
V. S.
Filinov
,
High Temp. (USSR)
7
,
216
(
1969
).
4.
D. J.
Adams
,
Mol. Phys.
29
,
307
(
1975
).
5.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1996).
6.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 1996).
7.
L. A.
Rowley
,
D.
Nicholson
, and
N. G.
Parsonage
,
J. Comput. Phys.
17
,
401
(
1975
).
8.
J.
Yao
,
R. A.
Greenkorn
, and
K. C.
Chao
,
Mol. Phys.
46
,
587
(
1982
).
9.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
10.
S.
Sokołowski
,
Mol. Phys.
75
,
999
(
1992
).
11.
D.
Boda
,
J.
Liszi
, and
I.
Szalai
,
Chem. Phys. Lett.
256
,
474
(
1996
).
12.
D.
Boda
,
K.
Chan
, and
I.
Szalai
,
Mol. Phys.
92
,
1067
(
1997
).
13.
M.
Mezei
,
Mol. Phys.
40
,
901
(
1980
).
14.
R. M.
Shroll
and
D. E.
Smith
,
J. Chem. Phys.
110
,
8295
(
1999
).
15.
J. W. Negele and H. Orland, Quantum Many-particle Systems (Perseus, Reading, 1998).
16.
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1993).
17.
G. Parisi, Statistical Field Theory (Addison–Wesley, Redwood City, 1988).
18.
G. V.
Efimov
and
E. A.
Nogovitsin
,
Physica A
234
,
506
(
1996
).
19.
J. W. Dettman, Applied Complex Variables (Macmillan, New York, 1969).
20.
N.
Rom
,
D. M.
Charutz
, and
D.
Neuhauser
,
Chem. Phys. Lett.
270
,
382
(
1997
).
21.
N.
Rom
,
E.
Fattal
,
A. K.
Gupta
,
E. A.
Carter
, and
D.
Neuhauser
,
J. Chem. Phys.
109
,
8241
(
1998
).
22.
R.
Baer
,
M.
Head-Gordon
, and
D.
Neuhauser
,
J. Chem. Phys.
109
,
6219
(
1998
).
23.
J. Glimm and A. Jaffe, Quantum Physics (Springer, New York, 1981).
24.
G. V.
Efimov
and
G.
Ganbold
,
Phys. Status Solidi
168
,
165
(
1991
).
25.
M. Dineykhan, G. V. Efimov, G. Ganbold, and S. N. Nedelko, Oscillator Representation in Quantum Physics (Springer, Berlin, 1995).
26.
G. V.
Efimov
and
G.
Ganbold
,
Phys. Part. Nucl.
26
,
198
(
1995
).
27.
G.
Ganbold
and
G. V.
Efimov
,
J. Phys.: Condens. Matter
10
,
4845
(
1998
).
28.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
68
,
3837
(
1978
).
29.
F. H.
Stillinger
and
D. K.
Stillinger
,
Physica A
244
,
358
(
1997
).
30.
E. O. Brigham, FFT: Schnelle Fourier-Transformation (Oldenbourg, München, 1995).
31.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
32.
Note that the error estimation for the auxiliary field calculations has been done with the method of Hatano (Ref. 42).
33.
G.
Sugiyama
and
S. E.
Koonin
,
Ann. Phys. (Leipzig)
168
,
1
(
1986
).
34.
P. L.
Silvestrelli
,
S.
Baroni
, and
R.
Car
,
Phys. Rev. Lett.
71
,
1148
(
1993
).
35.
S. A. Baeurle, PhD. thesis, University of Stuttgart, 2000.
36.
Here it is worth mentioning that the quantity χ can be shown to be directly related to the excess chemical potential μex and average density 〈ρ〉μVT=〈N〉μVT/V through the relation χ=〈ρ〉μVT eβμexe(1/2)βΦ(0).
37.
D.
Chandler
,
Phys. Rev. E
48
,
2898
(
1993
).
38.
E.
Kaxiras
and
S.
Yip
,
Curr. Opin. Solid State Mater. Sci.
3
,
523
(
1998
);
R.
Phillips
,
Curr. Opin. Solid State Mater. Sci.
3
,
526
(
1998
);
A.
Uhlherr
and
D. N.
Theodorou
,
Curr. Opin. Solid State Mater. Sci.
3
,
544
(
1998
);
F. F.
Abraham
,
J. Q.
Broughton
,
N.
Bernstein
, and
E.
Kaxiras
,
Comput. Phys.
12
,
538
(
1998
).
39.
W. Nolting, Grundkurs: Theoretische Physik, 6 Statistische Physik (Zimmermann-Neufang, Ulmen, 1994).
40.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
41.
S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Interscience, New York, 1965).
42.
N.
Hatano
,
J. Phys. Soc. Jpn.
63
,
1691
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.