New path integral Monte Carlo constant volume specific heat (CV) estimators are presented that improve upon the thermodynamic, virial, and centroid virial CV estimators via a free particle projection. These projected estimators significantly reduce the numerical noise of the traditional estimators. The new projected thermodynamic estimator has particular advantages when derivatives of the potential are expensive to evaluate. A double virial estimator is derived for real space path integrals and comparisons are made to it. The centroid virial estimators are found to be significantly better than the noncentroid virial estimators.

1.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965).
2.
L. S. Schulman, Techniques and Applications of Path Integrals (Wiley, New York, 1986).
3.
R. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972).
4.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
5.
C.
Chakravarty
,
Int. Rev. Phys. Chem.
16
,
421
(
1997
).
6.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
7.
D. D.
Frantz
,
J. Chem. Phys.
102
,
3747
(
1995
).
8.
D.
Marx
,
P.
Nielaba
, and
K.
Binder
,
Int. J. Mod. Phys. C
3
,
337
(
1992
).
9.
E.
Loh
,
Phys. Rev. Lett.
55
,
2371
(
1985
).
10.
J.
Schulte
and
M. C.
Böhm
,
Phys. Rev. B
53
,
15385
(
1996
).
11.
J.
Schulte
and
M. C.
Böhm
,
Phys. Status Solidi B
199
,
59
(
1997
).
12.
R. M.
Fye
,
Phys. Rev. B
33
,
6271
(
1986
).
13.
R. M.
Fye
and
R. T.
Scalettar
,
Phys. Rev. B
36
,
3833
(
1987
).
14.
M.
Suzuki
,
S.
Miyashita
, and
A.
Kuroda
,
Prog. Theor. Phys.
58
,
1377
(
1977
).
15.
H. D.
Raedt
and
B. D.
Raedt
,
Phys. Rev. A
28
,
3575
(
1983
).
16.
E.
Loh
, Jr.
,
D. J.
Scalapino
, and
P. M.
Grant
,
Phys. Rev. B
31
,
4712
(
1985
).
17.
M. F.
Herman
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
76
,
5150
(
1982
).
18.
M.
Creutz
and
B.
Freedman
,
Ann. Phys. (Leipzig)
132
,
427
(
1981
).
19.
P. A.
Fernandes
,
A. P.
Carvalho
, and
J. P. P.
Ramalho
,
J. Chem. Phys.
103
,
5720
(
1995
).
20.
W.
Janke
and
T.
Sauer
,
J. Chem. Phys.
107
,
5821
(
1997
).
21.
M.
Kolář
and
S. F.
O’Shea
,
J. Phys. A
29
,
3471
(
1996
).
22.
E. L.
Pollock
and
D. M.
Ceperley
,
Phys. Rev. B
30
,
2555
(
1984
).
23.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
91
,
6359
(
1989
).
24.
C.
Chakravarty
,
M. C.
Gordillo
, and
D. M.
Ceperley
,
J. Chem. Phys.
109
,
2123
(
1998
).
25.
J. D.
Doll
and
D. L.
Freemann
,
J. Chem. Phys.
111
,
7685
(
1999
).
26.
C.
Chakravarty
,
M. C.
Gordillo
, and
D. M.
Ceperley
,
J. Chem. Phys.
111
,
7687
(
1999
).
27.
D. L.
Freeman
and
J. D.
Doll
,
J. Chem. Phys.
80
,
5709
(
1984
).
28.
J. A.
Barker
,
J. Chem. Phys.
70
,
2914
(
1979
).
29.
A.
Giansanti
and
G.
Jacucci
,
J. Chem. Phys.
89
,
7454
(
1988
).
30.
K. R.
Glaesemann
and
L. E.
Fried
,
J. Chem. Phys.
116
,
5951
(
2002
).
31.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
32.
M.
Matsumoto
and
T.
Nishimura
,
ACM Trans. Model. Comput. Simul.
8
,
3
(
1998
).
33.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
99
,
2902
(
1993
).
34.
D. J.
Lacks
,
Phys. Rev. B
56
,
13927
(
1997
).
35.
R. J.
Hardy
,
D. J.
Lacks
, and
R. C.
Shukla
,
Phys. Rev. B
57
,
833
(
1998
).
36.
B.
Burghardt
,
J.
Eicke
, and
J.
Stolze
,
J. Chem. Phys.
108
,
1562
(
1998
).
37.
S.
Mura
and
S.
Okazaki
,
J. Chem. Phys.
112
,
10116
(
2000
).
38.
L. M.
Sesé
,
J. Chem. Phys.
108
,
9086
(
1998
).
39.
M.
Takahashi
and
M.
Imada
,
J. Phys. Soc. Jpn.
53
,
3765
(
1984
).
40.
X.-P.
Li
and
J. Q.
Broughton
,
J. Chem. Phys.
86
,
5094
(
1987
).
41.
L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed., Part 1 (Pergamon, New York, 1985), pp. 98–104.
42.
J. P.
Neirotti
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
3990
(
2000
).
43.
J.
Schulte
,
R.
Ramı́rez
, and
M. C.
Böhm
,
Chem. Phys. Lett.
322
,
527
(
2000
).
44.
R.
Rousseau
and
D.
Marx
,
J. Chem. Phys.
111
,
5091
(
1999
).
45.
D.
Marx
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
46.
R.
Ramı́rez
,
E.
Hernández
,
J.
Schulte
, and
M. C.
Böhm
,
Chem. Phys. Lett.
291
,
44
(
1998
).
47.
M. C.
Böhm
,
R. R.
Ramı́rez
, and
J.
Schulte
,
Chem. Phys.
227
,
271
(
1998
).
48.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
49.
R.
Assaraf
and
M.
Caffarel
,
Phys. Rev. Lett.
83
,
4682
(
1999
).
50.
J. W.
Lawson
,
Phys. Rev. E
61
,
61
(
2000
).
51.
G. J.
Martyna
,
A.
Hughes
, and
M. E.
Tuckerman
,
J. Chem. Phys.
110
,
3275
(
1999
).
52.
L. M.
Sesé
,
Mol. Phys.
99
,
585
(
2001
).
53.
K. J.
Runge
and
G. V.
Chester
,
Phys. Rev. B
38
,
135
(
1988
).
54.
M. A.
Miller
,
L. M.
Amon
, and
W. P.
Reinhardt
,
Chem. Phys. Lett.
331
,
278
(
2000
).
55.
K. S.
Schweizer
,
R. M.
Stratt
,
D.
Chandler
, and
P. G.
Wolynes
,
J. Chem. Phys.
75
,
1347
(
1981
).
56.
G.
Franke
,
E.
Hilf
, and
L.
Polley
,
Z. Phys. D: At., Mol. Clusters
9
,
343
(
1988
).
57.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
58.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
59.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.