Broadband dielectric spectroscopy, heat capacity spectroscopy (3ω method), and viscosimetry have been used to study the dynamic glass transition of two glass-forming epoxy resins, poly [(phenyl glycidyl ether)-co-formaldehyde] and diglycidyl ether of bisphenol-A. In spite of their rather simple molecular structure, the dynamics of these systems is characterized by two well-separated crossover regions where the relaxation times of main transition and the two secondary relaxations β and γ approach each other. The main transition has three parts: The a process at high temperature, the a process between the two crossover regions, and the α process at low temperatures. Both the γ-crossover region [around a temperature Tc(γ)∼(1.4–1.5)Tg and a relaxation time τc(γ)≈10−10s] and the β-crossover region [around Tc(β)∼(1.1–1.2)Tg and τc(β)≈10−6s] could be studied within the experimentally accessible frequency–temperature window. Different typical crossover properties are observed in the two regions. The γ-crossover region is characterized by onset of the (a,α) process, with a relaxation time about one decade greater than that of the quasicontinuous (a,γ) trace. The β-crossover region is characterized, besides splitting of main andβ relaxation times, by a change in the temperature dependence of the main-relaxation time as reflected by a bend in the Stickel plot of the continuous (a,α) trace, the separation of individual temperature dependences of different transport properties such as impurity-ions diffusion coefficient and viscosity, and a temperature-dependent main relaxation time that starts to be in accordance (at lower temperatures) with the Adam–Gibbs model. The cooperativity of the main process between the γ and β crossover seems to be small. Below the β crossover, cooperativity increases up to values of order Nα∼100 near Tg, and configurational entropy seems to correlate with the main relaxation time.

1.
M.
Beiner
,
H.
Huth
, and
K.
Schröter
,
J. Non-Cryst. Solids
279
,
126
(
2001
).
2.
K. L.
Ngai
,
J. Non-Cryst. Solids
275
,
7
(
2000
).
3.
G.
Williams
,
Trans. Faraday Soc.
62
,
2091
(
1966
).
4.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
5.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
55
,
4245
(
1971
).
6.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
74
,
2034
(
1970
).
7.
F.
Garwe
,
A.
Schönhals
,
H.
Lockwenz
,
M.
Beiner
,
K.
Schröter
, and
E.
Donth
,
Macromolecules
29
,
247
(
1996
).
8.
R.
Casalini
,
D.
Fioretto
,
A.
Livi
,
M.
Lucchesi
, and
P. A.
Rolla
,
Phys. Rev. B
56
,
3016
(
1997
).
9.
S.
Kahle
,
J.
Korus
,
E.
Hempel
,
R.
Unger
,
S.
Höring
,
K.
Schröter
, and
E.
Donth
,
Macromolecules
30
,
7214
(
1997
).
10.
F. Stickel, PhD thesis, Universität Mainz, Mainz, Germany, 1995.
11.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
102
,
6251
(
1995
).
12.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
).
13.
C.
Hansen
,
F.
Stickel
,
R.
Richert
, and
E. W.
Fischer
,
J. Chem. Phys.
108
,
6408
(
1998
).
14.
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G.
Fleischer
,
Z. Phys. B: Condens. Matter
88
,
195
(
1992
).
15.
J. H.
Magill
and
D. J.
Plazek
,
J. Chem. Phys.
46
,
3757
(
1967
).
16.
K. L.
Ngai
,
J. H.
Magill
, and
D. J.
Plazek
,
J. Chem. Phys.
112
,
1887
(
2000
).
17.
E.
Rössler
,
Phys. Rev. Lett.
65
,
1595
(
1990
).
18.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
19.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
20.
K.
Ngai
,
Phys. Rev. E
57
,
7346
(
1998
).
21.
K. L.
Ngai
,
J. Chem. Phys.
111
,
3639
(
1999
).
22.
M.
Beiner
,
S.
Kahle
,
E.
Hempel
,
K.
Schröter
, and
E.
Donth
,
Europhys. Lett.
44
,
321
(
1998
).
23.
S.
Kahle
,
K.
Schröter
,
E.
Hempel
, and
E.
Donth
,
J. Chem. Phys.
111
,
6462
(
1999
).
24.
E. Donth, The Glass Transition. Relaxation Dynamics in Liquids and Disordered Materials (Springer, Berlin 2001).
25.
S. S. N.
Murthy
,
J. Chem. Soc., Faraday Trans. 2
85
,
581
(
1989
).
26.
S. S. N.
Murthy
,
J. Mol. Liq.
44
,
51
(
1989
).
27.
A. Schönhals, in Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, edited by M. Giordano, D. Leporini, and M. Tosi (World Scientific, Singapore 1996), p. 210.
28.
E.
Donth
,
H.
Huth
, and
M.
Beiner
,
J. Phys.: Condens. Matter
13
,
L451
(
2001
).
29.
S.
Corezzi
,
S.
Capaccioli
,
R.
Casalini
,
D.
Fioretto
,
M.
Paluch
, and
P. A.
Rolla
,
Chem. Phys. Lett.
320
,
113
(
2000
).
30.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).
31.
N. O.
Birge
and
S. R.
Nagel
,
Phys. Rev. Lett.
54
,
2674
(
1985
).
32.
J.
Korus
,
M.
Beiner
,
K.
Busse
,
S.
Kahle
,
R.
Unger
, and
E.
Donth
,
Thermochim. Acta
304/305
,
99
(
1997
).
33.
H.
Huth
,
M.
Beiner
,
S.
Weyer
,
M.
Merzlyakov
,
C.
Schick
, and
E.
Donth
,
Thermochim. Acta
377
,
113
(
2001
).
34.
H.
Huth
,
M.
Beiner
, and
E.
Donth
,
Phys. Rev. B
61
,
15092
(
2000
).
35.
K.
Schröter
and
E.
Donth
,
J. Chem. Phys.
113
,
9101
(
2000
).
36.
L.
Comez
,
D.
Fioretto
,
L.
Palmieri
et al.,
Phys. Rev. E
60
,
3086
(
1999
).
37.
M.
Beiner
,
J.
Korus
,
H.
Lockwenz
,
K.
Schröter
, and
E.
Donth
,
Macromolecules
29
,
5183
(
1996
).
38.
P. K.
Dixon
and
S. R.
Nagel
,
Phys. Rev. Lett.
61
,
341
(
1988
).
39.
P. K.
Dixon
,
Phys. Rev. B
42
,
8179
(
1990
).
40.
W.
Götze
and
L.
Sjögren
,
Rep. Prog. Phys.
55
,
241
(
1992
).
41.
F.
Alvarez
,
A.
Hoffman
,
A.
Alegrı́a
, and
J.
Colmenero
,
J. Chem. Phys.
105
,
432
(
1996
).
42.
A.
Arbe
,
D.
Richter
,
J.
Colmenero
, and
B.
Farago
,
Phys. Rev. E
54
,
3853
(
1996
).
43.
K.
Schröter
,
R.
Unger
,
S.
Reissig
,
F.
Garwe
,
S.
Kahle
,
M.
Beiner
, and
E.
Donth
,
Macromolecules
31
,
8966
(
1998
).
44.
R.
Bergman
,
F.
Alvarez
,
A.
Alegrı́a
, and
J.
Colmenero
,
J. Chem. Phys.
109
,
7546
(
1998
).
45.
E.
Donth
,
K.
Schröter
, and
S.
Kahle
,
Phys. Rev. E
60
,
1099
(
1999
).
46.
A.
Arbe
,
J.
Colmenero
,
D.
Gómez
,
D.
Richter
, and
B.
Farago
,
Phys. Rev. E
60
,
1103
(
1999
).
47.
A.
Kudlik
,
S.
Benkhof
,
T.
Blochowicz
,
C.
Tschirwitz
, and
E.
Rössler
,
J. Mol. Struct.
479
,
201
(
1999
).
48.
A. Justl, Degree thesis, Universität Bayreuth, Bayreuth, Germany, 2000.
49.
S. Capaccioli (unpublished).
50.
S.
Corezzi
,
E.
Campani
,
P. A.
Rolla
,
S.
Capaccioli
, and
D.
Fioretto
,
J. Chem. Phys.
111
,
9343
(
1999
). In that work we called β relaxation what is labeled here γ relaxation.
51.
H. Z.
Cummins
,
J.
Hernandez
,
W. M.
Du
, and
G.
Li
,
Phys. Rev. Lett.
73
,
2935
(
1994
).
52.
A.
Schönhals
,
F.
Kremer
,
A.
Hofmann
,
E. W.
Fischer
, and
E.
Schlosser
,
Phys. Rev. Lett.
70
,
3459
(
1993
).
53.
For a discussion of the problems involved in assessing data fitting, see
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
54.
E.
Donth
,
J. Non-Cryst. Solids
53
,
325
(
1982
).
55.
E.
Hempel
,
G.
Hempel
,
A.
Hensel
,
C.
Schick
, and
E.
Donth
,
J. Phys. Chem. B
104
,
2460
(
2000
) (see Appendix).
56.
E. Donth, Relaxation and Thermodynamics in Polymers. Glass Transition (Akademie, Berlin 1992).
57.
M.
von Laue
,
Phys. Z.
18
,
542
(
1917
).
58.
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
59.
O.
Yamamuro
,
I.
Tsukushi
,
A.
Lindqvist
,
S.
Takahara
,
M.
Ishikawa
, and
T.
Matsuo
,
J. Phys. Chem. B
102
,
1605
(
1998
).
60.
S.
Corezzi
,
D.
Fioretto
,
S. C.
Santucci
,
S.
Capaccioli
,
R.
Casalini
,
M.
Lucchesi
,
E.
Hempel
, and
M.
Beiner
,
Philos. Mag. B
82
,
339
(
2002
).
61.
J.
Korus
,
E.
Hempel
,
M.
Beiner
,
S.
Kahle
, and
E.
Donth
,
Acta Polym.
48
,
369
(
1997
).
62.
This finding is consistent with the change of Vogel temperatures in the β-crossover region, mentioned above. Interpreting kBT0 as a measure of the roughness for the relevant energy landscape (Refs. 21 and 51), we see that the landscape for the α process has a lower roughness than those of the a or α process. (see Sec. IV D) above the β-crossover region. Increasing the cooperativity permits the phase-space point of representative subsystems to find its way through the landscape with low “saddles” accessible also at low temperature. Above the β crossover, at higher temperatures, the system can do with higher landscape saddles and does not need the cooperativity with rare low saddles.
63.
G. P.
Johari
and
E.
Whalley
,
Faraday Symp. Chem. Soc.
6
,
23
(
1972
).
64.
S. H.
Glarum
,
J. Chem. Phys.
33
,
639
(
1960
).
65.
H. Huth, PhD thesis, Universität Halle, Halle, Germany, 2001.
66.
E. Hempel (unpublished).
67.
I.
Alig
and
G. P.
Johari
,
J. Polym. Sci., Polym. Phys. Ed.
31
,
299
(
1993
).
68.
M. Beiner and G. P. Johari (unpublished).
69.
N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London 1967).
70.
R.
Greus
,
G.
Ribellez
, and
D.
Calleja
,
Polymer
26
,
1849
(
1985
).
71.
Gangasharan
and
S. S. N.
Murthy
,
J. Chem. Phys.
99
,
9865
(
1993
).
72.
T.
Nicolai
and
G.
Floudas
,
Macromolecules
31
,
2578
(
1998
).
73.
M.
Grimau
,
E.
Laredo
,
Y. M. C.
Perez
, and
A.
Bello
,
J. Chem. Phys.
114
,
6417
(
2001
).
74.
D.
Pisignano
,
S.
Capaccioli
,
R.
Casalini
,
M.
Lucchesi
,
P. A.
Rolla
,
A.
Justl
, and
E.
Rössler
,
J. Phys.: Condens. Matter
13
,
4405
(
2001
).
75.
M.
Beiner
,
Macromol. Rapid Commun.
22
,
869
(
2001
).
76.
S. Reissig, PhD thesis, Universität Halle, Halle, Germany, 2000.
This content is only available via PDF.
You do not currently have access to this content.