The effects of confining a polyelectrolyte solution containing a polyion and its counterions in spherical cavities of different sizes have been investigated by Monte Carlo simulations using a simple model system. Polyions of three different linear charge densities and counterions of three different valences have been examined. Structure, energy, and free energy properties of all systems have been determined as a function of the sphere radius. In nearly all cases, the free energy of confining the polyelectrolyte solution increases as the sphere radius is decreased. The free energy cost decreases as the linear charge density of the polyion is reduced and as the counterion valence is increased, although for completely different reasons. A strong consistency among the variations of the different structural and thermodynamic results on the linear charge density and counterion valence was found. The study provides information relevant for experimental systems of polyions confined to, e.g., viruses, vesicles, and zeolite cavities.

1.
G. A.
Cristos
and
S. L.
Carnie
,
Chem. Phys. Lett.
172
,
249
(
1990
).
2.
M. J.
Stevens
and
K.
Kremer
,
Phys. Rev. Lett.
71
,
2228
(
1993
).
3.
U.
Micka
and
K.
Kremer
,
Europhys. Lett.
38
,
279
(
1997
).
4.
M. Ullner, in Handbook of Polyelectrolytes and their Applications, edited by S. Tripathy, J. Kumar, and H. S. Halwa (American Science, Los Angeles, 2002).
5.
F. Evans and H. Wennerström, The Colloidal Domain Where Physics, Chemistry, Biology, and Technology Meet (VCN, New York, 1994).
6.
S. M.
Mel’nikov
,
V. G.
Sergeyev
,
K.
Yoshikawa
,
H.
Takahashi
, and
I.
Hatta
,
J. Chem. Phys.
107
,
6917
(
1997
).
7.
S. M.
Mel’nikov
,
R.
Dias
,
Y. S.
Mel’nikova
,
E. F.
Marques
,
M. G.
Miguel
, and
B.
Lindman
,
FEBS Lett.
453
,
113
(
1999
).
8.
P.
Smith
,
R. M.
Lynden-Bell
, and
W.
Smith
,
Phys. Chem. Chem. Phys.
2
,
1305
(
2000
).
9.
S. M.
Mel’nikov
,
M. O.
Khan
,
B.
Lindman
, and
B.
Jönsson
,
J. Am. Chem. Soc.
121
,
1130
(
1999
).
10.
R.
Dias
,
S.
Mel’nikov
,
B.
Lindman
, and
M. G.
Miguel
,
Langmuir
16
,
9577
(
2000
).
11.
K.
Wagner
,
D.
Harries
,
S.
May
,
V.
Kahl
,
J. O.
Rädler
, and
A.
Ben-Shaul
,
Langmuir
16
,
303
(
2000
).
12.
M. O.
Khan
and
B.
Jönsson
,
Biopolymers
49
,
121
(
1999
).
13.
R. G.
Winkler
,
M.
Gold
, and
P.
Reineker
,
Phys. Rev. Lett.
80
,
3731
(
1998
).
14.
T.
Wallin
and
P.
Linse
,
Langmuir
12
,
305
(
1996
).
15.
R. R.
Netz
and
J.-F.
Joanny
,
Macromolecules
32
,
9026
(
1999
).
16.
T. T.
Nguyen
and
B. I.
Shklovskii
,
J. Chem. Phys.
114
,
5905
(
2001
).
17.
P.
Chodanowsaki
and
S.
Stoll
,
J. Chem. Phys.
115
,
4951
(
2001
).
18.
M.
Jonsson
and
P.
Linse
,
J. Chem. Phys.
115
,
3406
(
2001
).
19.
A. Akinchina and P. Linse (unpublished).
20.
J.
Kindt
,
S.
Tzlil
,
A.
Ben-Shaul
, and
W.
Gelbart
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
13671
(
2001
).
21.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
22.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976).
23.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
24.
V.
Lobaskin
and
P. J.
Linse
,
J. Chem. Phys.
111
,
4300
(
1999
).
25.
MOLSIM, Version 3.1.7, P. Linse, Lund University, Sweden, 2001.
26.
H. J.
Limbach
and
C.
Holm
,
J. Chem. Phys.
114
,
9674
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.