In this paper a combined experimental and quantum chemical study of the geometry and opto-electronic properties of unsubstituted and dialkoxy-sustituted phenylene–vinylene oligomers (PV’s) is presented. The optical absorption spectra for PV cations with different chain lengths and substitution patterns were measured using pulse radiolysis with time-resolved spectrophotometric detection from 1380 to 500 nm (0.9 to 2.5 eV). The geometries of the PV’s studied were optimized using density functional theory (DFT) for both the neutral and singly charged molecule. The spectra for the PV radical cations were then calculated using singly excited configuration interaction with an intermediate neglect of differential overlap reference wave function method together with the DFT geometry. The agreement between experimental and theoretical absorption energies is excellent; most of the calculated radical cation absorption energies are within 0.15 eV of the experimental values. The pattern of dialkoxy-substitution is found to have a large effect on the optical absorption spectrum of the cation. Using the calculated charge distribution it is shown that the degree of delocalization of the charge correlates with the energy of the lowest absorption band. If alkoxy side chains are present on some of the rings the positive charge tends to localize at those sites.

1.
C. J.
Drury
,
C. M. J.
Mutsaers
,
C. M.
Hart
,
M.
Matters
, and
D. M.
de Leeuw
,
Appl. Phys. Lett.
73
,
108
(
1998
).
2.
R. H.
Friend
,
R. W.
Gymer
,
A. B.
Holmes
,
J. H.
Burroughes
,
R. N.
Marks
,
C.
Taliani
,
D. D. C.
Bradley
,
D. A.
Dos Santos
,
J.-L.
Brédas
,
M.
Löglund
, and
W. R.
Salaneck
,
Nature (London)
397
,
121
(
1999
).
3.
G. H.
Gelinck
,
T. C. T.
Geuns
, and
D. M.
de Leeuw
,
Appl. Phys. Lett.
77
,
1487
(
2000
).
4.
A.
Kraft
,
A. C.
Grimsdale
, and
A. B.
Holmes
,
Angew. Chem. Int. Ed. Engl.
37
,
402
(
1998
).
5.
M. D.
McGehee
and
A. J.
Heeger
,
Adv. Mater.
22
,
1655
(
2000
).
6.
T. J.
Savenije
,
J. M.
Warman
, and
A.
Goossens
,
Chem. Phys. Lett.
287
,
148
(
1998
).
7.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
MacKay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
,
Nature (London)
347
,
539
(
1990
).
8.
P. L.
Burn
,
A. B.
Holmes
,
A.
Kraft
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. H.
Friend
, and
R. W.
Gymer
,
Nature (London)
356
,
47
(
1992
).
9.
S.-J.
Chung
,
J.-I.
Jin
, and
K.-K.
Kim
,
Adv. Mater.
9
,
551
(
1997
).
10.
P. F.
van Hutten
,
V. V.
Krasnikov
, and
G.
Hadziioannou
,
Acc. Chem. Res.
32
,
257
(
1999
).
11.
Y.
Furukawa
,
J. Phys. Chem.
100
,
15644
(
1996
).
12.
A.
Sakamoto
,
Y.
Furukawa
, and
M.
Tasumi
,
J. Phys. Chem. B
101
,
1726
(
1997
).
13.
J.
Cornil
,
D.
Beljonne
, and
J. L.
Bredas
,
J. Chem. Phys.
103
,
834
(
1995
).
14.
A.
Sakamoto
,
Y.
Furukawa
, and
M.
Tasumi
,
J. Phys. Chem.
98
,
4635
(
1994
).
15.
K.
Fesser
,
A. R.
Bishop
, and
D. K.
Campbell
,
Phys. Rev. B
27
,
4804
(
1983
).
16.
E.
Mulazzi
,
A.
Ripamonti
,
J.
Wery
,
B.
Dulieu
, and
S.
Lefrant
,
Phys. Rev. B
60
,
16519
(
1999
).
17.
P. F. Van Hutten and G. Hadziioannou, in Semiconducting Polymers, edited by G. Hadziioannou and P. F. Van Hutten (Wiley-VCH, Weinheim, 2000).
18.
A.
Hilberer
,
P. F.
Van Hutten
,
J.
Wildeman
and
G.
Hadziioannou
,
Macromol. Chem. Phys.
198
,
2211
(
1997
).
19.
L. P.
Candeias
,
J.
Wildeman
,
G.
Hadziioannou
, and
J. M.
Warman
,
J. Phys. Chem. A
104
,
8366
(
2000
).
20.
L. P.
Candeias
,
G. H.
Gelinck
,
J. J.
Piet
,
J.
Piris
,
B. R.
Wegewijs
,
E.
Peeters
,
J.
Wildeman
,
G.
Hadziioannou
, and
K.
Müllen
,
Synth. Met.
119
,
339
(
2001
).
21.
G.
te Velde
and
E. J.
Baerends
,
J. Comput. Phys.
99
,
84
(
1992
).
22.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. Fonseca
Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
23.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
25.
J. P.
Perdew
,
Phys. Rev. B
33
,
8800
(
1986
).
26.
A. D.
Bacon
and
M. C.
Zerner
,
Theor. Chim. Acta
53
,
21
(
1979
).
27.
F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999).
28.
J.
Ridley
and
M. C.
Zerner
,
Theor. Chim. Acta
32
,
111
(
1973
).
29.
M. C.
Zerner
,
G. H.
Loew
,
R. F.
Kirchner
, and
U. T.
Mueller-Westerhoff
,
J. Am. Chem. Soc.
102
,
589
(
1980
).
30.
P. A.
Van Hal
,
E. H. A.
Beckers
,
E.
Peeters
,
J. J.
Apperloo
, and
R. A. J.
Janssen
,
Chem. Phys. Lett.
328
,
403
(
2000
).
31.
R.
Cooper
and
J. K.
Thomas
,
J. Chem. Phys.
48
,
5097
(
1968
).
32.
N.
Gee
and
G. R.
Freeman
,
Can. J. Chem.
70
,
1618
(
1992
).
33.
W. F.
Schmidt
and
A. O.
Allen
,
J. Phys. Chem.
72
,
3730
(
1968
).
34.
G.
Moro
,
G.
Scalmani
,
U.
Cosentino
, and
D.
Pitea
,
Synth. Met.
108
,
165
(
2000
).
35.
J.
Cornil
,
D.
Beljonne
, and
J.-L.
Bredas
,
J. Chem. Phys.
103
,
842
(
1995
).
36.
P. Gomes
da Costa
,
R. G.
Dandrea
, and
E. M.
Conwell
,
Phys. Rev. B
47
,
1800
(
1993
).
37.
H.
Becker
,
H.
Spreitzer
,
K.
Ibrom
, and
W.
Kreuder
,
Macromolecules
32
,
4925
(
1999
).
38.
G.
Brocks
,
Synth. Met.
102
,
914
(
1999
).
39.
G.
Moro
,
G.
Scalmani
,
U.
Cosentino
, and
D.
Pitea
,
Synth. Met.
92
,
69
(
1998
).
40.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
41.
V. M. Geskin, A. Dkhissi and J.-L. Brédas, Int. J. Quant. Chem. (to be published).
42.
J. A. E. H.
van Haare
,
E. E.
Havinga
,
J. L. J.
van Dongen
,
R. A. J.
Janssen
,
J.
Cornil
, and
J.-L.
Bredas
,
Chem. Eur. J.
4
,
1509
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.