Ab initio coupled cluster calculations with single and double substitutions and a perturbative treatment of connected triple substitutions [CCSD(T)] have been carried out to generate six-dimensional (6D) potential energy surfaces (PES) and dipole moment surfaces (DMS) for the electronic ground state of ammonia. Full 6D-PES and 6D-DMS (14400 points) were computed with the augmented correlation-consistent triple-zeta basis (aug-cc-pVTZ). For a selected number of points (420 in C3v symmetry and 1260 in lower symmetry), more accurate energies (CBS+) were obtained by extrapolating the CCSD(T) results for the aug-cc-pVXZ(X=T,Q,5) basis sets to the complete basis set limit and adding corrections for core-valence correlation and relativistic effects. Two procedures were investigated to enhance the quality of the 6D-PES from CCSD(T)/aug-cc-pVTZ by including the CBS+ data points. The resulting 6D-PES were represented by analytical functions involving Morse variables for the stretches, symmetry-adapted bending coordinates, and a specially designed inversion coordinate (up to 76 fitted parameters, rms deviations of about 5 cm−1 for 14 400 ab initio data points). For these analytical surfaces, vibrational energies were calculated with a newly developed computer program using a variational model that employs an Eckart-frame kinetic energy operator. Results are presented and compared to experiment for the vibrational band centers of NH3 and its isotopomers up to around 15 000 cm−1. For our best 6D-PES, the term values of the fundamentals are reproduced with rms deviations of 4.4 cm−1(NH3) and 2.6 cm−1 (all isotopomers), the maximum deviation being 7.9 cm−1.

1.
P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research, Ottawa, 1998).
2.
S. L.
Coy
and
K. K.
Lehmann
,
Spectrochim. Acta, Part A
45A
,
47
(
1989
).
3.
I.
Kleiner
,
G.
Tarrago
, and
L. R.
Brown
,
J. Mol. Spectrosc.
173
,
120
(
1995
).
4.
V.
Špirko
and
W. P.
Kraemer
,
J. Mol. Spectrosc.
133
,
331
(
1989
).
5.
J.
Pesonen
,
A.
Miani
, and
L.
Halonen
,
J. Chem. Phys.
115
,
1243
(
2001
).
6.
C.
Leonard
,
N. C.
Handy
,
S.
Carter
, and
J. M.
Bowman
,
Spectrochim. Acta, Part A
58A
,
825
(
2002
).
7.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
108
,
9751
(
1998
).
8.
W.
Klopper
,
C. C. M.
Samson
,
G.
Tarczay
, and
A. G.
Császár
,
J. Comput. Chem.
22
,
1306
(
2001
).
9.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
8361
(
1992
).
10.
N. C.
Handy
,
S.
Carter
, and
S. M.
Colwell
,
Mol. Phys.
96
,
477
(
1999
).
11.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
12.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
13.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
14.
MOLPRO2000 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning et al.
15.
C.
Hampel
,
K.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
), and references therein.
The program to compute the perturbative triples corrections has been developed by
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
16.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
17.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
18.
Thresholds in atomic units: Primitive atomic orbital (AO) integrals are neglected if the exponential factor is below 10−14. Contracted AO and symmetry AO (SO) integrals are neglected if they are less than 10−14. Convergence criteria for HF calculations: 10−10 for density and 10−7 for energy; for CCSD(T) calculations: 10−10 for energy and 10−10 for coefficients; and for geometry optimization: 10−5 for gradient and 10−8 for energy.
19.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
);
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
20.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
21.
T.
van Mourik
,
G. J.
Harris
,
O. L.
Polyansky
,
J.
Tennyson
,
A. G.
Császár
, and
P. J.
Knowles
,
J. Chem. Phys.
115
,
3706
(
2001
).
22.
The interpolation method was tested for the planar D3h configurations using ATZfc, AQZfc, and A5Zfc. The resulting N–H bond lengths were 0.997 554, 0.996 018, and 0.995 577 Å, respectively. They deviate from the directly optimized bond lengths in Table I by only +0.000 025, −0.000 006, and −0.000 020 Å, respectively. This indicates the precision of the interpolation. The corresponding deviations in the total energies are +0.000 029, +0.000 028, and +0.000 047 a.u., respectively.
23.
The bond length takes the following values: [0.60, 0.70, 0.80, 0.85, 0.90, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.07, 1.09, 1.11, 1.15, 1.20, 1.25, 1.35, 1.45, 1.55, 1.65] Å. The angle takes the following values (the same as those in 1D-PES): [120, 119, 118, 116, 114, 112, 110, 109, 108, 107, 106, 105, 104, 103, 101, 99, 95, 90, 80, 70] deg.
24.
R.
Lemus
and
A.
Frank
,
Chem. Phys. Lett.
349
,
471
(
2001
).
25.
P.
Jensen
,
J. Mol. Spectrosc.
128
,
478
(
1988
).
26.
J. T.
Hougen
,
P. R.
Bunker
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
34
,
136
(
1970
).
27.
D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982).
28.
V.
Špirko
,
J. Mol. Spectrosc.
101
,
30
(
1983
).
29.
D.
Papoušek
,
J. M. R.
Stone
, and
V.
Špirko
,
J. Mol. Spectrosc.
48
,
17
(
1973
).
30.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
).
31.
A.
Sayvetz
,
J. Chem. Phys.
7
,
383
(
1939
).
32.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
33.
G. O. Sørensen, in Topics in Current Chemistry, edited by M. J. S. Dewar et al. (Springer-Verlag, Heidelberg, 1979), Vol. 82, p. 99.
34.
P.
Jensen
,
Comput. Phys. Rep.
1
,
1
(
1983
).
35.
B.
Numerov
,
Publs. Observatoire Central. Astrophys. Russ.
2
,
188
(
1933
).
36.
J. W.
Cooley
,
Math. Comput.
15
,
363
(
1961
).
37.
L. D.
Ziegler
and
B.
Hudson
,
J. Phys. Chem.
88
,
1110
(
1984
).
38.
P.
Rosmus
,
P.
Botschwina
,
H. J.
Werner
,
V.
Vaida
,
P. C.
Engelking
, and
M. I.
McCarthy
,
J. Chem. Phys.
86
,
6677
(
1987
).
39.
I.
Kleiner
,
L. R.
Brown
,
G.
Tarrago
,
Q-L.
Kou
,
N.
Picqué
,
G.
Guelachvili
,
V.
Dana
, and
J-Y.
Mandin
,
J. Mol. Spectrosc.
193
,
46
(
1999
).
40.
C.
Cottaz
,
I.
Kleiner
,
G.
Tarrago
,
L. R.
Brown
,
J. S.
Margolis
,
R. L.
Poynter
,
H. M.
Pickett
,
T.
Fouchet
,
P.
Drossart
, and
E.
Lellouch
,
J. Mol. Spectrosc.
203
,
285
(
2000
).
41.
C.
Cottaz
,
G.
Tarrago
,
I.
Kleiner
, and
L. R.
Brown
,
J. Mol. Spectrosc.
209
,
30
(
2001
).
42.
E.
Kauppi
and
L.
Halonen
,
J. Chem. Phys.
103
,
6861
(
1995
).
43.
P. Jensen, G. Osmann, and I. N. Kozin, in Vibration-Rotational Spectroscopy and Molecular Dynamics, Advanced Series in Physical Chemistry, edited by D. Papoušek (World Scientific, Singapore, 1997), Vol. 9.
44.
M.
Snels
,
L.
Fusina
,
H.
Hollenstein
, and
M.
Quack
,
Mol. Phys.
98
,
837
(
2000
).
45.
D.
Luckhaus
,
J. Chem. Phys.
113
,
1329
(
2000
).
46.
T.
Rajamäki
,
A.
Miani
,
J.
Pesonen
, and
L.
Halonen
,
Chem. Phys. Lett.
363
,
226
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.