We study the dynamics of polymers in a random disordered medium of fixed obstacles using kinetic Monte Carlo methods. The polymers can have monomers which have attractive (A-type), repulsive (R-type) or neutral (H-type) interactions with the fixed obstacles that comprise the disordered medium. Several classes of homopolymers and heteropolymers with diverse sequences have been studied. Our most noteworthy result is that, above a threshold temperature, polymer bearing monomers that are attracted to the disordered medium translocate faster through the medium than those bearing neutral or repulsive monomers. We discuss how a delicate balance between energetic and entropic factors leads to this counterintuitive outcome. By examining heteropolymers with different sequences, we also find that the dependence of mobility on average composition is stronger than that on higher order correlations characterizing the sequence distribution. Connections between our results and experiments with synthetic and biological systems are noted.

1.
M.
Muthukumar
,
J. Non-Cryst. Solids
131
,
654
(
1991
).
2.
P. G.
de Gennes
,
J. Chem. Phys.
55
,
572
(
1971
);
M.
Muthukumar
and
A.
Baumgartner
,
Macromolecules
22
,
1937
(
1989
).
3.
A.
Baumgartner
and
M.
Muthukumar
,
J. Chem. Phys.
87
,
3082
(
1987
);
S. F.
Edwards
and
M.
Muthukumar
,
J. Chem. Phys.
89
,
2435
(
1988
).
4.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).
5.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
6.
M.
Muthukumar
and
A.
Baumgartner
,
Macromolecules
22
,
1937
(
1989
).
7.
J.
Rousseau
,
G.
Drouin
, and
G. W.
Slater
,
Phys. Rev. Lett.
79
,
1945
(
1997
).
8.
S. W. P.
Turner
,
M.
Cabodi
, and
H. G.
Craighead
,
Phys. Rev. Lett.
88
,
128103
(
2002
).
9.
R. E.
Hileman
,
J. R.
Fromm
,
J. M.
Weiler
, and
R. J.
Linhardt
,
BioEssays
20
,
156
(
1998
).
10.
F. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1990
).
11.
C. D.
Sfatos
and
E. I.
Shakhnovich
,
Phys. Rep.
288
,
77
(
1997
);
A. K.
Chakraborty
,
Phys. Rep.
342
,
1
(
2001
).
12.
L.
Mirny
and
E.
Shakhnovich
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
361
(
2001
);
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
7524
(
1987
);
H. S.
Chan
and
K. A.
Dill
,
Phys. Today
46
,
24
(
1993
).
13.
S.
Srebnik
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
77
,
3157
(
1996
).
14.
A. J.
Golumbfskie
,
V. S.
Pande
, and
A. K.
Chakraborty
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11707
(
1999
);
A. K.
Chakraborty
and
A. J.
Golumbfskie
,
Annu. Rev. Phys. Chem.
52
,
537
(
2001
).
15.
A. K.
Chakraborty
and
E. I.
Shakhnovich
,
J. Chem. Phys.
103
,
10751
(
1995
).
16.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
);
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
J. Chem. Phys.
106
,
1264
(
1997
).
17.
D.
Cule
and
T.
Hwa
,
Phys. Rev. Lett.
80
,
3145
(
1998
).
18.
K.
Ribbeck
and
D.
Grolich
,
EMBO J.
20
,
1320
(
2001
).
19.
K. Binder and D. W. Heermann, Monte Carlo Methods in Statistical Physics: An Introduction, 2nd ed. (Springer-Verlag, Berlin, 1992).
20.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaid
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C.
Poon
,
Science
296
,
104
(
2002
).
21.
M. E.
Cates
and
R. C.
Ball
,
J. Phys. (France)
49
,
2009
(
1988
).
22.
M.
Muthukumar
,
Phys. Rev. Lett.
86
,
3188
(
2001
).
23.
See EPAPS Document No. E-JCPSA6-117-502247 for animations constructed from simulations.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html or from ftp.aip.org in the directory/epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.