A calorimetric method of obtaining directly the fragility of liquids from the fictive temperatures of variably quenched glasses, is outlined. “Steepness indexes” m, have been determined for a group of molecular liquids of diverse character, and vary in the range 50–150. The values obtained mostly agree well with those from earlier studies using dielectric relaxation, heat capacity spectroscopy, and viscosity data. In our method there is the advantage that the fragility is determined from the relaxation process that is basic to the calorimetric glass transition temperature measurement, namely, that of the enthalpy. The calorimetric measurements also yield the liquid and glass heat capacities, and entropies of fusion, permitting relationships between thermodynamic and kinetic responses to be examined simultaneously. We study glycerol, dibutylphthallate, 9-bromophenanthrene, salol, orthoterphenyl, propylene carbonate, decalin and its nitrogen derivative decahydroisoquinoline, and find the latter two to be the most fragile liquids known, m =145 and 128 respectively. Surprisingly, of the liquids studied, decalin has the smallest increase in heat capacity at the glass transition. By contrast, the strongest liquid, glycerol, has the largest increase. However, the thermodynamic fragility of decalin, assessed from the scaled rate of increase of the excess entropy above Tg, is found to be high, due to the unusually small value of the excess entropy at Tg. Conversely, the entropy-based fragility for glycerol is the lowest. Thus the correlation of kinetic and entropy-based thermodynamic fragilities reported in recent work is upheld by data from the present study, while the basis for any correlation with the jump in heat capacity itself is removed.

1.
C. A. Angell, in Relaxation in Complex Systems, edited by K. L. Ngai and G. B. Wright (NRL, Washington, DC, 1985).
2.
M.
Tatsumisago
,
B. L.
Halfpap
,
J. L.
Green
,
S. M.
Lindsay
, and
C. A.
Angell
,
Phys. Rev. Lett.
64
,
1549
(
1990
).
3.
R.
Böhmer
and
C. A.
Angell
,
Phys. Rev. B
45
,
10091
(
1992
).
4.
D. J.
Plazek
and
K. L.
Ngai
,
Macromolecules
24
,
1222
(
1991
).
5.
K.
Ito
,
C. T.
Moynihan
, and
C. A.
Angell
,
Nature (London)
398
,
492
(
1999
).
6.
S.
Sastry
,
Nature (London)
409
,
164
(
2001
).
7.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
8.
H.
Vogel
,
Phys. Z.
22
,
645
(
1921
);
G. S.
Fulcher
,
J. Am. Chem. Soc.
8
,
339
(
1923
);
G.
Tammann
and
W. Z.
Hesse
Anorg. Allgem. Chem.
156
,
245
(
1926
).
9.
C.
Hansen
,
F.
Stickel
,
T.
Berger
,
R.
Richert
, and
E. W.
Fischer
,
J. Chem. Phys.
107
,
1086
(
1997
).
10.
W.
Gotze
and
L.
Sjogren
,
Rep. Prog. Phys.
55
,
241
(
1992
).
11.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
102
,
6251
(
1995
);
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
).
12.
E.
Rössler
and
A. P.
Sokolov
,
Chem. Geol.
128
,
143
(
1996
).
13.
C. A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
);
C. A.
Angell
,
Science
267
,
1924
(
1995
).
14.
J. L.
Barrat
and
M. L.
Klein
,
Ann. Rev. Phys. Chem.
42
,
23
(
1991
).
15.
A.
Sokolov
,
Endeavor
21
,
109
(
1997
).
16.
C. A.
Angell
,
J. Res. Natl. Inst. Stand. Technol.
102
,
171
(
1997
).
17.
L.-M.
Martinez
and
C. A.
Angell
,
Nature (London)
410
,
663
(
2001
).
18.
F. H.
Stillinger
and
P. G.
Debenedetti
,
J. Chem. Phys.
116
,
3353
(
2002
).
19.
E.
Rössler
,
K.-U.
Hess
, and
V.
Novikov
,
J. Non-Cryst. Solids
223
,
207
(
1998
).
20.
U.
Buchenau
,
Phys. Rev. B
63
,
104203
(
2001
).
21.
K. J.
Rao
,
S.
Kumar
, and
M. H.
Bhat
,
J. Phys. Chem. B
105
,
9023
(
2001
).
22.
X. L.
Zhao
and
D.
Kivelson
,
J. Phys. Chem.
99
,
6721
(
1995
).
23.
C. A.
Angell
and
C. T.
Moynihan
,
Metall. Mater. Trans. B
31
,
4587
(
2000
);
C. T.
Moynihan
and
C. A.
Angell
,
J. Non-Cryst. Solids
274
,
131
(
2000
);
C. A.
Angell
,
J. Phys.: Condens. Matter
12
,
6463
(
2000
).
24.
T. A.
Vilgis
,
Phys. Rev. B
47
,
2882
(
1993
);
T. A.
Vilgis
,
Phys. Rep.
336
,
167
(
2000
).
25.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
);
R. Böhmer and C. A. Angell, in Disorder Effects on Relaxational Processes, edited by A. Blumen and R. Richert (Springer, Berlin, 1994), p. 11.
26.
J. L.
Green
,
K.
Ito
,
K.
Xu
, and
C. A.
Angell
,
J. Phys. Chem. B
103
,
3991
(
1999
).
27.
T.
Moynihan
,
A. J.
Easteal
,
M. A.
DeBolt
, and
J.
Tucker
,
J. Am. Chem. Soc.
59
,
12
(
1976
);
M. A.
DeBolt
,
A. J.
Easteal
,
J.
Wilder
, and
J.
Tucker
,
J. Phys. Chem.
78
,
2673
(
1974
);
K. J.
Crowley
and
G.
Zografi
,
Thermochim. Acta
380
,
79
(
2001
).
28.
J. L. Yarger, private communication.
29.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
).
30.
Reference 27.
31.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
Science
294
,
2335
(
2001
);
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
J. Phys. Chem. B
106
,
1069
(
2002
).
32.
G. M.
Bartenev
,
Dokl. Akad. Nauk SSSR
76
,
227
(
1951
).
33.
I. Gutzow and J. Schmelzer, The Vitreous States (Springer, Berlin, 1995).
34.
P. G. Debenedetti, Metastable liquids: concepts and principles (Princeton University Press, Princeton, N.J., 1996).
35.
K.
Vollmayr
,
W.
Kob
, and
K.
Binder
,
Phys. Rev. B
54
,
15808
(
1996
).
36.
C. T.
Moynihan
,
J. Am. Chem. Soc.
59
,
16
(
1976
).
37.
C. T. Moynihan, in Assignment of the Glass Transition, ASTM STP 1249, edited by R. J. Seyler (American Society for Testing and Materials, Philadelphia, 1994).
38.
Y. Z.
Yue
,
J. deC.
Christiansen
, and
S. L.
Jensen
,
Chem. Phys. Lett.
357
,
20
(
2002
).
39.
K. Lantzky, D. Roddick, and J. L. Yarger (unpublished).
40.
W.
Suchanski
,
S.
Jurga
,
T.
Pakula
,
M.
Paluch
, and
J.
Ziolo
,
J. Phys. Condens. Matter
12
,
9551
(
2000
).
41.
B.
Schiener
,
A.
Loidl
,
R. V.
Chamberlin
, and
R.
Böhmer
,
J. Mol. Liq.
69
,
243
(
1996
).
42.
Calorimetric studies using the present method (Ref. 39) yield a value close to the value 126 extracted from the VFT equation fits to the viscosity data of Ref. 43. A slightly lower number, 115, may be assessed from the dielectric data of Rössler and co-workers that extend down to Tg [
S.
Dvinskikh
,
G.
Benini
,
J.
Senker
,
M.
Vogel
,
J.
Wiedersich
,
A.
Kudlik
, and,
E.
Rössler
,
J. Phys. Chem. B
103
,
1727
(
1999
). See their Fig. 15.].
43.
P. J.
Chappell
and
D.
Kivelson
,
J. Chem. Phys.
76
,
1742
(
1982
).
44.
C.
Alba
,
L. E.
Busse
,
D. J.
List
, and
C. A.
Angell
,
J. Chem. Phys.
92
,
617
(
1990
).
45.
The relaxation time data for decalin are from current work by
K.
Duvvuri
and
R.
Richert
,
J. Chem. Phys.
117
,
4414
(
2002
) (dielectric relaxation studies) and by
M.
Yang
and
R.
Richert
,
Chem. Phys.
284
,
103
(
2002
) (solvation dynamics studies).
46.
N. O.
Birge
,
Phys. Rev. B
34
,
1631
(
1986
).
47.
P.
Lunkenheimer
,
U. R.
Brand
, and
A.
Loidl
,
Contemp. Phys.
41
,
15
(
2000
).
48.
P. K.
Dixon
and
S. R.
Nagel
,
Phys. Rev. Lett.
61
,
341
(
1988
);
P. K.
Dixon
,
L.
Wu
, and
S. R.
Nagel
,
Phys. Rev. Lett.
65
,
1108
(
1990
).
49.
N.
Menon
and
S. R.
Nagel
,
Phys. Rev. Lett.
73
,
963
(
1994
).
50.
J. R.
Huck
,
G. A.
Noyel
,
L. J.
Jorat
, and
A. M.
Bondeau
,
J. Electrost.
12
,
221
(
1982
).
51.
S. W.
Martin
and
C. A.
Angell
,
J. Phys. Chem.
90
,
6736
(
1986
).
52.
D. H.
Huang
and
G. B.
McKenna
,
J. Chem. Phys.
114
,
5621
(
2001
).
53.
S.
Sastry
,
Nature (London)
409
,
164
(
2001
).
54.
J. P.
McCullough
,
H. L.
Finke
,
J. F.
Messerly
,
S. S.
Todd
,
T. C.
Kincheloe
, and
G.
Waddington
,
J. Chem. Phys.
61
,
1105
(
1997
).
55.
F. H.
Stillinger
and
T. A.
Weber
,
Science
228
,
983
(
1984
).
56.
E.
La Nave
,
A.
Scala
,
F. W.
Starr
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. E
64
,
036102
(
2001
).
57.
D.
Thorn Leeson
and
D. A.
Wiersma
,
Phys. Rev. Lett.
74
,
2138
(
1995
).
58.
D. J.
Wales
,
Science
293
,
2067
(
2001
);
and work presented at the second workshop on Unifying Concepts in Glass Physics (Rome, 2002).
59.
C. T. Moynihan, V. Velikov, and C. A. Angell (unpublished work).
60.
B.
Wunderlich
,
J. Phys. Chem.
64
,
1052
(
1960
).
61.
A.
Weitz
and
B.
Wunderlich
,
J. Polym. Sci., Polym. Phys. Ed.
12
,
2473
(
1974
).
62.
N. J.
Andrews
and
A. R.
Ubbelohde
,
Proc. R. Soc. A
228
,
435
(
1955
);
E.
McLaughlin
and
A. R.
Ubbelohde
,
Trans. Far. Soc.
54
,
1804
(
1958
).
63.
D. J.
Plazek
and
J. H.
Magill
,
J. Chem. Phys.
45
,
3038
(
1996
).
64.
P. K. Dixon et al., see Ref. 48;
H. Z.
Cummins
,
W. M.
Du
,
M.
Fuchs
,
W.
Götze
,
S.
Hildebrand
,
A.
Latz
,
G.
Li
, and
N. J.
Tao
,
Phys. Rev. E
47
,
4223
(
1993
);
C.
Glorieux
,
K. A.
Nelson
,
G.
Hinze
, and
M. D.
Fayer
,
J. Chem. Phys.
116
,
3384
(
2002
).
65.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature (London)
393
,
554
(
1998
).
66.
I.
Cohen
,
A.
Ha
,
X.-L.
Zhao
,
M.
Lee
,
T.
Fisher
,
M. J.
Strouse
, and
D.
Kivelson
,
J. Phys. Chem. B
100
,
8581
(
1996
);
M. L.
Ferrer
,
H.
Sakai
,
D.
Kivelson
, and
C.
Alba-Simionesco
,
J. Phys. Chem. B
103
,
4191
(
1999
).
67.
E.
Rössler
,
J. Chem. Phys.
92
,
3725
(
1990
).
68.
D. D.
Brace
,
S. D.
Gottke
,
H.
Cang
, and
M. D.
Fayer
,
J. Chem. Phys.
116
,
1598
(
2002
).
69.
W.
Kob
,
F.
Sciortino
, and
P.
Tartaglia
,
Europhys. Lett.
49
,
590
(
2000
).
70.
I.
Saika-Voivod
,
P. H.
Poole
, and
F.
Sciortino
,
Nature (London)
412
,
514
(
2001
).
71.
F.
Sciortino
,
W.
Kob
, and
P.
Tartaglia
,
Phys. Rev. Lett.
83
,
3214
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.