First principles molecular dynamics has been used to investigate the structural, vibrational, and energetic properties of [Ca(H2O)n]2+ clusters with n=1–9, and the hydration shell of a calcium ion in a periodically repeated box with 54 water molecules. We find that, while stable highly symmetric Ca–water clusters can be formed with up to eight water molecules, the n=9 cluster dissociates into the last stable [Ca(H2O8]2+ complex. In solution the first hydration shell around the Ca2+ ion contains six water molecules in an octahedral arrangement. The electronic structure of nearest neighbor hydration shell water molecules has been examined with a localized orbital analysis. The average dipole moments of hydration water molecules was found to be increased by about 0.4 Debye relative to that of pure water.

1.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
);
D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst, John von Neumann Institute for Computing, Julich, NIC Series (2000), Vol. 1, pp. 301–449.
2.
M. E.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Phys. Chem.
99
,
5749
(
1995
).
3.
D.
Marx
,
M.
Sprik
, and
M.
Parrinello
,
Chem. Phys. Lett.
373
,
360
(
1997
).
4.
A. P.
Lyubartsev
,
K.
Laasonen
, and
A.
Laaksonen
,
J. Chem. Phys.
114
,
3120
(
2001
).
5.
S. B.
Rempe
and
L.
Pratt
,
Fluid Phase Equilib.
183–184
,
121
(
2001
).
6.
L. M.
Ramaniah
,
M.
Bernasconi
, and
M.
Parrinello
,
J. Chem. Phys.
111
,
1587
(
1999
).
7.
F. C.
Lightstone
,
E.
Schwegler
,
R. Q.
Hood
,
F.
Gygi
, and
G.
Galli
,
Chem. Phys. Lett.
343
,
549
(
2001
).
8.
M. I.
Lubin
,
E. J.
Bylaska
, and
J. H.
Weare
,
Chem. Phys. Lett.
322
,
447
(
2000
).
9.
M. M.
Probst
,
T.
Radnai
,
K.
Heinzinger
,
P.
Bobb
, and
B. M.
Rode
,
J. Phys. Chem.
89
,
753
(
1985
).
10.
F.
Jalilehvand
,
D.
Spangberg
,
P.
Lindqvist-Reis
,
K.
Hermanson
,
I.
Person
, and
M.
Sandstrom
,
J. Am. Chem. Soc.
123
,
431
(
2001
).
11.
G.
Licheri
,
G.
Piccaluga
, and
G.
Pinna
,
J. Chem. Phys.
64
,
2437
(
1976
).
12.
N. A.
Hewish
,
G. N.
Nelson
, and
R. A.
Howe
,
Nature (London)
297
,
138
(
1982
).
13.
C. F.
Schwenk
,
H. H.
Loeefer
, and
B.
Rode
,
J. Chem. Phys.
115
,
10808
(
2001
).
14.
F. M.
Floris
,
M.
Persico
,
A.
Tani
, and
J.
Tomasi
,
Chem. Phys. Lett.
227
,
126
(
1994
).
15.
M. I.
Bernal-Uruchurtu
and
I.
Ortega-Blake
,
J. Chem. Phys.
103
,
1588
(
1995
).
16.
A.
Tongrar
,
K. R.
Liedl
, and
B. M.
Rode
,
J. Phys. Chem.
101
,
6299
(
1997
).
17.
G.
Pálinkás
and
K.
Heinzinger
,
Chem. Phys. Lett.
126
,
251
(
1986
).
18.
X.
Periole
,
D.
Allouche
,
J-P.
Daudey
, and
Y. H.
Sanejouand
,
J. Phys. Chem. B
101
,
5018
(
1997
).
19.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
20.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
C.
Lee
,
W.
Yang
, and
R. C.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
21.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
22.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
23.
CPMD, Version 3.4, developed by J. Hutter et al., Max-Planck-Institut für Festkörperforschung and IBM Zurich Research Laboratory, 1995–1999.
24.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
25.
M.
Peschke
,
A. T.
Blades
, and
P.
Kebarle
,
Int. J. Mass. Spectrom.
185
,
685
(
1999
).
26.
S.
Boys
and
F.
Bernandi
,
Mol. Phys.
19
,
553
(
1970
).
27.
M.
Pavlov
,
Per E. M.
Siegbahn
, and
M.
Sandstom
,
J. Phys. Chem. A
102
,
219
(
1998
).
28.
E. D.
Glendening
and
D.
Feller
,
J. Phys. Chem.
100
,
4790
(
1996
).
29.
C. A.
Coulson
and
D.
Eisenberg
,
Proc. R. Soc. London, Ser. A
291
,
445
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.