Methods for the calculation of complexity have been investigated as a possible alternative for the analysis of the dynamics of molecular systems. “Computational mechanics” is the approach chosen to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been developed for symbolization of a continuous physical trajectory of a dynamic system. A method for calculating statistical complexity has been implemented and tested on representative systems. It is shown that the computational mechanics approach is suitable for analyzing the dynamic complexity of molecular systems and offers new insight into the process.
REFERENCES
1.
M.
Braxenthaler
, R.
Unger
, D.
Auerbach
, J.A.
Given
, and J.
Moult
, Proteins: Struct., Funct., Genet.
29
, 417
(1997
).2.
3.
4.
R.
Gaspard
, M.E.
Briggs
, M.K.
Francis
, J.V.
Sengers
, R.W.
Gammon
, J.R.
Dorfman
, and R.V.
Calabrese
, Nature (London)
394
, 865
(1998
).5.
S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993).
6.
J.H. Holland, Emergence: From Chaos to Order (Oxford University Press, New York, 1998).
7.
R. Badii and A. Politi, Complexity: Hierarchical structures and Scaling in Physics (Cambridge University Press, Cambridge, 1999).
8.
9.
R. Baierlein, Atoms and Information Theory: An Introduction to Statistical Mechanics (Freeman, New York, 1971).
10.
H.S. Robertson, Statistical Thermophysics (Prentice–Hall, Englewood Cliffs, 1993).
11.
J.P. Crutchfield and N.H. Packard, in Evolution of Order and Chaos, edited by H. Haken (Springer-Verlag, Berlin, 1982), pp. 215–227.
12.
13.
14.
15.
J.S.
Shiner
, M.
Davison
, and P.T.
Landsberg
, Phys. Rev. E
59
, 1459
(1999
).16.
17.
J.P.
Crutchfield
, D.P.
Feldman
, and C.R.
Shalizi
, Phys. Rev. E
62
, 2996
(2000
).18.
19.
M. Mitchell, J.P. Crutchfield, and P.T. Hraber, in Complexity: Metaphors, Models, and Reality, SFI Series in the Sciences of Complexity, edited by G. Cowan, D. Pines, and D. Melzner (Addison–Wesley, Reading, 1994), Vol. XIX, pp. 497–513.
20.
J.P.
Crutchfield
and K.
Young
, Phys. Rev. Lett.
63
, 105
(1989
).21.
J.P. Crutchfield and K. Young, in Entropy, Complexity, and Physics of Information, SFI Studies in the Sciences of Complexity, edited by W. Zurek (Addison–Wesley, Reading, (1990)), Vol. VIII, pp. 223–269.
22.
23.
David Feldman, A brief introduction to: Information theory, excess entropy and computational mechanics (http://hornacek.coa.edu/dave/Tutorial/index.html) (unpublished)
24.
25.
26.
27.
28.
D.
Nerukh
, G.
Karvounis
, and R. C.
Glen
, J. Chem. Phys.
117
, 9618
(2002
), following paper.29.
C.S. Daw and C.E.A. Finney, Rev. Sci. Instrum. (submitted).
30.
31.
32.
P.E.
Rapp
, C.J.
Cellucci
, K.E.
Korslund
, T.A.A.
Watanabe
, and M.A.
Jimenez-Montano
, Phys. Rev. E
64
, 016209
(2001
).33.
E.
Bollt
, T.
Stanford
, Y.-C.
Lai
, and K.
Zyczkowski
, Physica D
154
, 259
(2001
).34.
T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.