Conformations of isolated homo-dendrimers of G=1–7 generations with D=1–6 spacers have been studied in the good and poor solvents, as well as across the coil-to-globule transition, by means of a version of the Gaussian self-consistent method and Monte Carlo simulation in continuous space based on the same coarse-grained model. The latter includes harmonic springs between connected monomers and the pair-wise Lennard-Jones potential with a hard core repulsion. The scaling law for the dendrimer size, the degrees of bond stretching and steric congestion, as well as the radial density, static structure factor, and asphericity have been analyzed. It is also confirmed that while smaller dendrimers have a dense core, larger ones develop a hollow domain at some separation from the center.

1.
A.
Hult
,
M.
Johansson
, and
E.
Malmström
,
Adv. Polym. Sci.
143
,
1
(
1999
).
2.
G. R. Newkome, C. N. Moorefield, and F. Vögtle, Dendritic Molecules (Verlag-Chemie, Weinheim, Germany, 1996).
3.
D. A.
Tomalia
,
A. N.
Naylor
, and
W. A.
Goddard
III
,
Angew. Chem. Int. Ed. Engl.
29
,
138
(
1990
).
4.
J. M. J.
Fréchet
,
Science
263
,
1710
(
1994
).
5.
A. W.
Bosman
,
H. M.
Janssen
, and
E. W.
Meijer
,
Chem. Rev.
99
,
1665
(
1999
).
6.
G. E.
Oosterom
,
J. N. H.
Reek
,
P. C. J.
Kamer
, and
P. W. N. M.
van Leuwen
,
Angew. Chem. Int. Ed. Engl.
40
,
1829
(
2001
).
7.
D.
de Groot
,
B. F. M.
de Waals
,
J. N. H.
Reek
,
A. P. H. J.
Schenning
,
P. C. J.
Kamer
,
E. W.
Meijer
, and
P. W. N. M.
van Leuwen
,
J. Am. Chem. Soc.
123
,
8453
(
2001
).
8.
M. J.
Liu
and
J. M. J.
Fréchet
,
Pharm. Sci. Technol. Today
2
,
393
(
1999
).
9.
J. F. G. A.
Jansen
,
E. M. M.
de Brabander-van den Berg
, and
E. W.
Meijer
,
Science
266
,
1226
(
1994
).
10.
R.
La Ferla
,
J. Chem. Phys.
106
,
688
(
1997
).
11.
J. J.
Freire
,
Adv. Polym. Sci.
143
,
34
(
1999
).
12.
R.
Scherrenberg
,
B.
Coussens
,
P.
van Vliet
, and
G.
Edouard
et al.,
Macromolecules
31
,
456
(
1998
);
F.
Mallamace
,
E.
Canetta
,
D.
Lombardo
, and
A.
Mazzaglia
et al.,
Physica A
304
,
235
(
2002
).
13.
P. G.
de Gennes
and
H.
Hervet
,
J. Phys. (Paris)
44
,
L351
(
1983
).
14.
D.
Boris
and
M.
Rubinstein
,
Macromolecules
29
,
7251
(
1996
).
15.
F.
Ganazzoli
,
Condens. Matter Phys.
5
,
1
(
2002
).
16.
E. G.
Timoshenko
,
Yu. A.
Kuznetsov
, and
K. A.
Dawson
,
Phys. Rev. E
57
,
6801
(
1998
).
17.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Science, New York, 1989).
18.
J. des Cloizeaux and G. Jannink, Polymers in Solution (Oxford Science, New York, 1990).
19.
F.
Ganazzoli
,
R.
La Ferla
, and
G.
Terragni
,
Macromolecules
33
,
6611
(
2000
).
20.
F.
Ganazzoli
,
R.
La Ferla
, and
G.
Raffaini
,
Macromolecules
34
,
4222
(
2001
).
21.
F.
Ganazzoli
and
R.
La Ferla
,
J. Chem. Phys.
113
,
9288
(
2000
).
22.
A. N.
Naylor
,
W. A.
Goddard
III
,
G. E.
Kiefer
, and
D. A.
Tomalia
,
J. Am. Chem. Soc.
111
,
2339
(
1989
).
23.
R. L.
Lescanec
and
M.
Muthukumar
,
Macromolecules
23
,
2280
(
1990
).
24.
M. L.
Mansfield
and
L. I.
Klushin
,
Macromolecules
26
,
4262
(
1993
).
25.
Zh. Yu.
Chen
and
Sh.-M.
Cui
,
Macromolecules
29
,
7943
(
1996
).
26.
P.
Biswas
and
B. J.
Cherayil
,
J. Chem. Phys.
100
,
3201
(
1994
).
27.
M.
Murat
and
G. S.
Grest
,
Macromolecules
29
,
1278
(
1996
).
28.
Yu. A.
Kuznetsov
and
E. G.
Timoshenko
,
J. Chem. Phys.
111
,
3744
(
1999
).
29.
F.
Ganazzoli
,
Yu. A.
Kuznetsov
, and
E. G.
Timoshenko
,
Macromol. Theory Simul.
10
,
325
(
2001
).
30.
E. G.
Timoshenko
,
Yu. A.
Kuznetsov
, and
R.
Connolly
,
J. Chem. Phys.
116
,
3905
(
2002
).
31.
We have used the 28-CPU Beowulf cluster (SCOP) described in detail at http://darkstar.ucd.ie/cluster.
32.
E. G.
Timoshenko
and
Yu. A.
Kuznetsov
,
J. Chem. Phys.
117
,
5404
(
2002
);
e-print: cond-mat/0207204.
33.
E. G.
Timoshenko
and
Yu. A.
Kuznetsov
,
Colloids Surf., A
190
,
135
(
2001
).
34.
M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids (Clarendon, Oxford, 1987).
35.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
36.
For d(0)=0 the GSC theory and MC simulations exactly agree with the analytic formula for Rg2 by La Ferla (Ref. 10). Note that we do not have a factor of 3 in the first term of Eq. (1) and that the mean-squared radius of gyration in our notation is the quantity 3Rg2. Both of the factors of 3 cancel out therefore, so that formally Rg2(our)=Rg2(La Ferla).
This content is only available via PDF.
You do not currently have access to this content.