An empirical expression for the angular correlation function (ACF) of charged (Debye–Hückel) wormlike chains (WLC) with excluded volume (EV) is introduced. It reproduces the Monte Carlo (MC) data of a previous study very well. Using this expression analytical calculations for the persistence length (Lp), radius of gyration (Rg), and end-to-end distance (R) are given in the form of Taylor series. It is shown that the above quantities can be expressed as a weighted sum over the corresponding quantities (Lph,Rgh,Rh) of a set of ideal wormlike chains {Ch}h=0,1,… . Both the set {Ch} and the coefficients in the Taylor expansions are defined as functions of three parameters which are determined by fitting the ACF expression to the MC data. A comparison of the calculated Rg and R shows excellent agreement with the corresponding sampled values. The persistence length Lp is in good agreement with the values determined by fitting the sampled scattering functions by model expressions for neutral chains with excluded volume interactions, provided that a contribution due to EV is subtracted from Lp. Moreover, the method here proposed allows one to determine the persistence length of very short chains which is not possible by fitting the scattering function. The new expression for the angular correlation function, as well as the expressions derived for Rg and R are a natural generalization of well known results for ideal WLC, when EV and/or electrostatic interactions are present.

1.
H. Eisemberg, Biological Macromolecules and Polyelectrolytes in Solutions (Clarendon, Oxford, 1976).
2.
M. Hara, Polyelectrolytes: Science and Technology (Dekker, New York, 1993).
3.
S.
Förster
and
M.
Schmidt
,
Adv. Polym. Sci.
120
,
50
(
1995
).
4.
J. L.
Barrat
and
J. F.
Joanny
,
Adv. Chem. Phys.
XCIV
,
1
(
1996
).
5.
L. J.
Magid
,
J. Phys. Chem. B
102
,
4064
(
1988
).
6.
C.
Jerke
,
J. S.
Pedersen
,
S. U.
Egelhaaf
, and
P.
Schurtenberger
,
Langmuir
14
,
6013
(
1998
).
7.
G.
Sommer
,
L.
Cannavacciuolo
,
S. U.
Egelhaaf
,
J. S.
Pedersen
, and
P.
Schurtenberger
,
Prog. Colloid Polym. Sci.
115
,
347
(
2000
);
C.
Sommer
,
J. S.
Pedersen
,
S. U.
Egelhaaf
,
L.
Cannavacciuolo
,
J.
Kohlbrecher
, and
P.
Schurtenberger
,
Langmuir
18
,
2495
(
2002
).
8.
L. M.
Walker
,
Curr. Opin. Colloid Interface Sci.
6
,
451
(
2001
).
9.
L.
Cannavacciuolo
,
C.
Sommer
,
J. S.
Pedersen
, and
P.
Schurtenberger
,
Phys. Rev. E
62
,
5409
(
2000
).
10.
L.
Cannavacciuolo
,
J. S.
Pedersen
, and
P.
Schurtenberger
,
J. Phys.: Condens. Matter
14
,
2283
(
2002
).
11.
L.
Cannavacciuolo
,
J. S.
Pedersen
, and
P.
Schurtenberger
,
Langmuir
18
,
2922
(
2002
).
12.
By “fixed bond length” we mean that during a simulation the value of a is kept constant. However, in order to extrapolate data in the continuous limit, simulations at different values of a have been carried out.
13.
G.
Jerke
,
J. S.
Pedersen
,
S. U.
Egelhaaf
, and
P.
Schurtenberger
,
Phys. Rev. E
56
,
5772
(
1997
);
A.
Stradner
,
O.
Glatter
, and
P.
Schurtenberger
,
Langmuir
16
,
5345
(
2000
);
J. S.
Pedersen
,
S. U.
Egelhaaf
, and
P.
Schurtenberger
,
J. Phys. Chem.
99
,
1299
(
1995
).
14.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison–Wesley, Reading, 1958).
15.
See, for example, H. Dautzenberger, W. Jaeger, J. Kötz, B. Philipp, Ch. Seidel, and D. Stscherbina, Polyelectrolytes: Formation, Characterization, and Application (Hanser, Munich, 1994).
16.
U.
Micka
and
K.
Kremer
,
J. Phys.: Condens. Matter
8
,
9463
(
1996
);
U.
Micka
and
K.
Kremer
,
Europhys. Lett.
38
,
279
(
1997
).
17.
In performing the limit we have assumed the Pis to be independent of L, otherwise they should be understood as limiting values for L→∞. See also Sec. VII.
18.
See, for example, Y. L. Luke, The Special Functions and their Approximations (Academic, New York, 1969), Vol. II.
19.
M. Abramowitz and I.A. Stegun Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972).
20.
A. N. Khovanskii The Application of Continued Fraction and their Generalization to Problems in Approximation Theory (Noordhoff, Groninger, 1963).
21.
H.
Benoit
and
P.
Doty
,
J. Phys. Chem.
57
,
958
(
1953
).
22.
J. S.
Pedersen
,
M.
Laso
, and
P.
Schurtenberger
,
Phys. Rev. E
54
,
R5917
(
1996
);
J. S.
Pedersen
and
P.
Schurtenberger
,
Macromolecules
29
,
7602
(
1996
).
23.
T.
Odijk
,
J. Polym. Sci., Part B: Polym. Phys.
15
,
477
(
1977
);
J.
Skolnick
and
M.
Fixman
,
Macromolecules
10
,
944
(
1977
).
24.
J. L.
Barrat
and
J.-F.
Joanny
,
Europhys. Lett.
24
,
333
(
1993
).
25.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
110
,
7533
(
1999
).
26.
U.
Micka
and
K.
Kremer
,
Phys. Rev. E
54
,
2653
(
1995
).
27.
M.
Ullner
,
Bo
Jönsson
,
C.
Peterson
,
O.
Sommelius
, and
Bo
Söderberg
,
J. Chem. Phys.
107
,
1279
(
1997
).
28.
One could as an alternative procedure make a simultaneous fit of both Rg2(L,P2,P3,P3P4) and R2(L,P2,P3,P3P4).
This content is only available via PDF.
You do not currently have access to this content.