Because micro-ions accumulate around highly charged colloidal particles in electrolyte solutions, the relevant parameter to compute their interactions is not the bare charge, but an effective (or renormalized) quantity, whose value is sensitive to the geometry of the colloid, the temperature or the presence of added-salt. This nonlinear screening effect is a central feature in the field of colloidal suspensions or polyelectrolyte solutions. We propose a simple method to predict effective charges of highly charged macro-ions, that is reliable for monovalent electrolytes (and counterions) in the colloidal limit (large size compared to both screening length and Bjerrum length). Taking reference to the non linear Poisson–Boltzmann theory, the method is successfully tested against the geometry of the macro-ions, the possible confinement in a Wigner–Seitz cell, and the presence of added salt. Moreover, our results are corroborated by various experimental measures reported in the literature. This approach provides a useful route to incorporate the nonlinear effects of charge renormalization within a linear theory for systems where electrostatic interactions play an important role.

1.
E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
2.
R.
Kjellander
and
D. J.
Mitchell
,
Chem. Phys. Lett.
200
,
76
(
1992
).
3.
J.
Ulander
,
H.
Greberg
, and
R.
Kjellander
,
J. Chem. Phys.
115
,
7144
(
2001
), and references therein.
4.
L.
Belloni
,
Colloids Surf., A
140
,
227
(
1998
).
5.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
, and
P.
Pincus
,
J. Chem. Phys.
80
,
5776
(
1984
).
6.
R. J. Hunter, Foundations of Colloid Science (Clarendon, Oxford, 1995).
7.
J.-P.
Hansen
and
H.
Löwen
,
Annu. Rev. Phys. Chem.
51
,
209
(
2000
).
8.
This terminology should be used remembering that except in cylindrical geometry, there is no physical condensation (defined as the existence of a nonvanishing quantity of micro-ions in a layer of vanishing thickness around the polyion, see Refs. 9,10 11).
9.
J.-L.
Barrat
and
J.-F.
Joanny
,
Adv. Chem. Phys.
94
,
1
(
1996
).
10.
R. M.
Fuoss
,
A.
Katchalsky
, and
S.
Lifson
,
Proc. Natl. Acad. Sci. U.S.A.
37
,
579
(
1951
);
T.
Alfrey
,
P.
Berg
, and
H. J.
Morawetz
,
J. Polym. Sci.
7
,
543
(
1951
).
11.
G. V.
Ramanathan
,
J. Chem. Phys.
78
,
3223
(
1983
).
12.
P.
Attard
,
Adv. Chem. Phys.
92
,
1
(
1996
).
13.
C. N.
Likos
,
Phys. Rep.
348
,
267
(
2001
).
14.
Y.
Monovoukas
and
A. P.
Gast
,
J. Colloid Interface Sci.
128
,
533
(
1989
).
15.
M. J.
Stevens
,
M. L.
Falk
, and
M. O.
Robbins
,
J. Chem. Phys.
104
,
5209
(
1996
).
16.
In this respect, it is important to realize that for an infinitely long rod in the Manning limit, the effective line charge λeff is smaller than the equivalent charge λequiv. For large bare charges, we have in particular λsat<1/lB, see the discussion in Sec. III.
17.
A.
Diehl
,
M. C.
Barbosa
, and
Y.
Levin
,
Europhys. Lett.
53
,
86
(
2001
).
18.
P. S.
Kuhn
,
Y.
Levin
, and
M. C.
Barbosa
,
Macromolecules
31
,
8347
(
1998
).
19.
M.
Deserno
,
C.
Holm
, and
S.
May
,
Macromolecules
33
,
199
(
2000
).
20.
L.
Belloni
,
J. Phys.: Condens. Matter
12
,
R549
(
2000
).
21.
E.
Trizac
,
L.
Bocquet
, and
M.
Aubouy
, cond-mat/0201510.
22.
E.
Trizac
,
Phys. Rev. E
62
,
R1465
(
2000
).
23.
I. A.
Shkel
,
O. V.
Tsodirov
, and
M. T.
Record
,
J. Phys. Chem. B
104
,
5161
(
2000
).
24.
P.
Wette
,
H. J.
Shöpe
, and
T.
Palberg
,
J. Chem. Phys.
116
,
10981
(
2002
).
25.
J. C.
Crocker
and
D. G.
Grier
,
Phys. Rev. Lett.
77
,
1897
(
1996
).
26.
S. H.
Behrens
and
D. G.
Grier
,
J. Chem. Phys.
115
,
6716
(
2001
).
27.
H.
Oshima
,
T.
Healy
, and
L. R.
White
,
J. Colloid Interface Sci.
90
,
17
(
1982
).
28.
G. V.
Ramanathan
,
J. Chem. Phys.
88
,
3887
(
1988
).
29.
T. M.
Squires
and
M. P.
Brenner
,
Phys. Rev. Lett.
85
,
4976
(
2000
).
30.
A. M.
Larsen
and
D. G.
Grier
,
Nature (London)
385
,
230
(
1997
).
31.
C. A.
Tracy
and
H.
Widom
,
Physica A
244
,
402
(
1997
).
32.
M.
Fixman
,
J. Chem. Phys.
70
,
4995
(
1979
).
33.
R. A.
Marcus
,
J. Chem. Phys.
23
,
1057
(
1955
).
34.
E.
Trizac
and
J.-P.
Hansen
,
J. Phys.: Condens. Matter
8
,
9191
(
1996
).
35.
M. Deserno and C. Holm, in Proceedings of the NATO Advanced Study Institute on Electrostatic Effects in Soft Matter and Biophysics, edited by C. Holm et al. (Kluwer, Dordrecht, 2001).
36.
M.
Deserno
and
H. H.
von Grünberg
,
Phys. Rev. E
66
,
011401
(
2002
).
37.
W.
Härtl
and
H.
Versmold
,
J. Chem. Phys.
88
,
7157
(
1988
).
38.
H.
Löwen
,
J. Chem. Phys.
100
,
6738
(
1994
).
39.
V.
Lobaskin
and
P.
Linse
,
J. Chem. Phys.
111
,
4300
(
1999
).
40.
E.
Allahyarov
and
H.
Löwen
,
J. Phys.: Condens. Matter
13
,
L277
(
2001
).
41.
A. G.
Moreira
and
R. R.
Netz
,
Phys. Rev. Lett.
87
,
078301
(
2001
);
R. R.
Netz
,
Eur. Phys. J. E
5
,
557
(
2001
).
42.
M.
Dubois
,
T.
Zemb
,
L.
Belloni
,
A.
Delville
,
P.
Levitz
, and
R.
Setton
,
J. Chem. Phys.
75
,
944
(
1992
).
43.
J. P.
Hansen
and
E.
Trizac
,
Physica A
235
,
257
(
1997
).
44.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
,
3286
(
1988
).
45.
E. J.
Meijer
and
D.
Frenkel
,
J. Chem. Phys.
94
,
2269
(
1991
).
46.
F.
Bitzer
,
T.
Palberg
,
H.
Löwen
,
R.
Simon
, and
P.
Leiderer
,
Phys. Rev. E
50
,
2821
(
1994
).
47.
E.
Trizac
and
J.-P.
Hansen
,
Phys. Rev. E
56
,
3137
(
1997
).
48.
P. L.
Hansen
,
R.
Podgornik
, and
V. A.
Parsegian
,
Phys. Rev. E
64
,
021907
(
2001
).
49.
V.
Reus
,
L.
Belloni
,
T.
Zemb
,
N.
Lutterbach
, and
H.
Versmold
,
J. Phys. II
7
,
603
(
1997
).
50.
H. E.
Auer
and
Z.
Alexandrowicz
,
Biopolymers
8
,
1
(
1969
).
51.
E.
Raspaud
,
L.
da Conceicao
, and
F.
Livolant
,
Phys. Rev. Lett.
84
,
2533
(
2000
).
52.
M.
Deserno
,
C.
Holm
,
J.
Blaul
,
M.
Ballauff
, and
M.
Rehahn
,
Eur. Phys. J. E
5
,
97
(
2001
).
53.
R. D.
Groot
,
J. Chem. Phys.
95
,
9191
(
1991
).
54.
In neglects the discrete nature of the solvent, but takes into account the micro-ions explicitly as hard bodies.
55.
With the mathematical restriction that ZlB/a remains finite.
56.
M.
Deserno
and
C.
Holm
, cond-mat/0203599.
57.
F.
Cornu
and
B.
Jancovici
,
J. Chem. Phys.
90
,
2444
(
1989
).
58.
B.
Hribar
,
V.
Vlachy V
,
L. B.
Bhuiyan
, and
C. W.
Outhwaite
,
J. Phys. Chem. B
104
,
11533
(
2000
).
59.
A.
Evilevitch
,
V.
Lobaskin
,
U.
Olsson
,
P.
Linse
, and
P.
Schurtenberger
,
Langmuir
17
,
1043
(
2001
).
60.
T.
Palberg
,
W.
Mönch
,
F.
Bitzer
,
R.
Piazza
, and
T.
Bellini
,
Phys. Rev. Lett.
74
,
4555
(
1995
).
61.
J. C.
Crocker
and
D. G.
Grier
,
Phys. Rev. Lett.
73
,
352
(
1994
).
62.
E.
Allahyarov
,
I.
d’Amico
, and
H.
Löwen
,
Phys. Rev. Lett.
81
,
1334
(
1998
).
63.
P.
Linse
and
V.
Lobaskin
,
Phys. Rev. Lett.
83
,
4208
(
1999
).
64.
R.
Messina
,
C.
Holm
, and
K.
Kremer
,
Phys. Rev. Lett.
85
,
872
(
2000
).
65.
L. B.
Bhuiyan
,
V.
Vlachy
, and
C. W.
Outhwaite
,
Int. Rev. Phys. Chem.
21
,
1
(
2002
).
66.
H. H.
von Grünberg
,
R.
van Roij
, and
G.
Klein
,
Europhys. Lett.
55
,
580
(
2001
).
67.
See, e.g., D. Andelman, in Membranes, their Structure and Conformation, edited by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1996).
68.
B.
Beresford-Smith
,
D. Y. C.
Chan
, and
D. J.
Mitchell
,
J. Colloid Interface Sci.
216
,
9691
(
1985
).
69.
L. F. Rojas, C. Urban, P. Schurtenberger, T. Gisler, and H. H. von Grünberg, Europhys. Lett. (submitted).
This content is only available via PDF.
You do not currently have access to this content.