Oxidative dehydrogenation (ODH) of small-chain alkanes has the potential to displace thermal cracking as the preferred method of light olefin production. Many heterogeneous catalysts for the ODH reaction have been discussed in the literature, including oxides, vanadates, and phosphates of rare earth and transition metals. Our experiments and the literature indicate that for most of these catalysts, including silica gel and alumina, a phosphorus-enriched surface enhances the ODH yield of ethane to ethylene. To understand the role of P, the ODH reactions were simulated on a silica surface, with and without P, using the density functional theory code DMol3 in a periodic supercell. Optimized structures for all intermediates as well as transition states were obtained for full catalytic cycles. The simulations reveal that activation barriers for the rate-limiting steps are lowered by ∼10 kcal/mol in the presence of P. The decrease results from a transition state in which the P atom remains quasi-5-valent and fourfold coordinated.

1.
A. M.
Thayer
,
Chem. Eng. News
78
,
19
(
2000
).
2.
R. L. Bergman and N. W. Frisch, U. S. Patent No. 3,293,28 (1966).
3.
C. C.
Torardi
and
J. C.
Calabrease
,
Inorg. Chem.
23
,
1308
(
1984
).
4.
J. W.
Johnson
,
D. C.
Johnston
,
A. J.
Jacobson
, and
J. F.
Brody
,
J. Am. Chem. Soc.
106
,
8123
(
1984
).
5.
T.
Shimoda
,
T.
Okuhara
, and
M.
Misono
,
Bull. Chem. Soc. Jpn.
58
,
2163
(
1985
).
6.
T. P.
Moser
and
J.
Shrader
,
Catalysis
92
,
216
(
1985
).
7.
G.
Busca
,
F.
Cavern
,
G.
Centi
, and
F.
Trifiro
,
J. Catal.
99
,
400
(
1986
).
8.
T. C. Yang, K. K. Rao, and I. Der Huang, U. S. Patent No. 4392986 (1987).
9.
E.
Bordes
,
Catal. Today
1
,
499
(
1987
).
10.
F. B.
Abdelouahab
,
R.
Olier
,
N.
Guilhaume
,
F.
Lefebvre
, and
J. C.
Volta
,
J. Catal.
134
,
151
(
1992
).
11.
G. H.
Hutchings
,
A. D.
Chomel
,
R.
Olier
, and
J. C.
Volta
,
Nature (London)
368
,
41
(
1994
).
12.
H.
Morishige
,
J.
Tamaki
,
N.
Miura
, and
N.
Yamazoe
,
Chem. Lett.
9
,
1513
(
1990
).
13.
M. T.
Sananes
,
G. J.
Hutchings
, and
J. C.
Volta
,
J. Chem. Soc. Chem. Commun.
2
,
243
(
1995
).
14.
M. T.
Sananes
,
G. J.
Hutchings
, and
J. C.
Volta
,
J. Catal.
154
,
253
(
1995
).
15.
G.
Koyano
,
T.
Okuhara
, and
M.
Misono
,
J. Am. Chem. Soc.
120
,
767
(
1998
).
16.
N. Harrouch
Batis
,
H.
Batis
,
A.
Ghorbel
,
J. C.
Vedrine
, and
J. C.
Volta
,
J. Catal.
128
,
151
(
1992
).
17.
M.
Abon
,
K. E.
Bere
,
A.
Tuel
, and
P.
Delichere
,
J. Catal.
156
,
28
(
1995
).
18.
G. Stefani, F. Budi, C. Fumagalli, and G. D. Suciu, in New Developments in Selective Oxidation, edited by G. Centi and F. Trifiro (Elsevier, Amsterdam, 1990), p. 537.
19.
L. M.
Cornaglia
,
C.
Caspani
, and
E. A.
Lombardo
,
Appl. Catal.
74
,
15
(
1991
).
20.
F.
Garbassi
,
J.
Bart
,
R.
Tassinari
,
G.
Vlaic
, and
P.
Labarde
,
J. Catal.
98
,
317
(
1986
).
21.
P. Bastians, M. Genet, L. Daza, D. Acosta, P. Ruiz, and B. Delmon, in New Developments in Selective by Heterogeneous Catalysis, edited by P. Ruiz and B. Delmon (Elsevier, Amsterdam, 1992), p. 267.
22.
T.
Okuhara
and
M.
Misono
,
Catal. Today
16
,
61
(
1993
).
23.
G. W.
Coulston
,
E. A.
Thompson
, and
N.
Herron
,
J. Catal.
163
,
122
(
1996
).
24.
F. R. Kubias, H. Papp, A. Krepel, and A. Kretschmer, in Proceedings of the Third World Congress on Oxidation Catalysis, edited by R. K. Grasselli, S. T. Oyama, A. M. Gaffney, and J. E. Lyons (Elsevier, Amsterdam, 1997), p. 461.
25.
P.
Delichere
,
K. E.
Bere
, and
M.
Abon
,
Appl. Catal., A
172
,
295
(
1998
).
26.
P.
Gai
and
K.
Kourtakis
,
Science
267
,
661
(
1995
).
27.
P.
Gai
,
K.
Kourtakis
,
D. R.
Coulson
, and
G. C.
Sonnichsen
,
J. Phys. Chem. B
101
,
9916
(
1997
).
28.
Z.-Y.
Xue
and
G. L.
Shrader
,
J. Phys. Chem. B
103
,
9459
(
1999
).
29.
G. T. Click, and B. J. Barone, U. S. Patent No. 4,515,899 (1985).
30.
L. E.
Birkeland
,
S. M.
Babitz
,
G. K.
Bethke
,
H. H.
Kung
,
G. W.
Coulston
, and
S. R.
Bare
,
J. Phys. Chem. B
101
,
6895
(
1997
).
31.
J. M. C.
Bueno
,
G. K.
Bethke
,
M. C.
Kung
, and
H. H.
Kung
,
Catal. Today
43
,
101
(
1998
).
32.
J. M. M.
Millet
,
Catal. Rev. Sci. Eng.
40
,
1
(
1998
).
33.
M.
Ai
,
E.
Muneyama
,
A.
Kunishige
, and
K.
Ohdan
,
Bull. Chem. Soc. Jpn.
67
,
551
(
1994
).
34.
E.
Muneyama
,
A.
Kunishige
,
K.
Ohdan
, and
M.
Ai
,
Appl. Catal., A
116
,
165
(
1994
).
35.
E.
Muneyama
,
A.
Kunishige
,
K.
Ohdan
, and
M.
Ai
,
J. Catal.
158
,
378
(
1996
).
36.
J. M. M. Millet, J. C. Vedrine, and G. Hecquet, in New Developments in Selective Oxidation, edited by G. Centi and F. Trifiro (Elsevier, Amsterdam, 1990), Vol. 55, p. 833.
37.
P.
Bonnet
,
J. M. M.
Millet
,
C.
Leclercq
, and
J. C.
Vedrine
,
J. Catal.
158
,
128
(
1996
).
38.
D.
Rouzies
,
J. M. M.
Millet
,
D.
Siew Hew Sam
, and
J. C.
Vedrine
,
Appl. Catal., A
124
,
189
(
1995
).
39.
M.
Ai
,
E.
Muneyama
,
A.
Kunishige
, and
K.
Ohdan
,
J. Catal.
144
,
632
(
1993
).
40.
E.
Muneyama
,
A.
Kunishige
,
K.
Ohdan
, and
M.
Ai
,
Catal. Lett.
31
,
209
(
1995
).
41.
J. E.
Miller
,
M. M.
Gonzales
,
L.
Evans
,
A. G.
Sault
,
C.
Zhang
,
R.
Rao
,
G.
Whitwell
,
A.
Maiti
, and
D.
King-Smith
,
Appl. Catal., A
231
,
281
(
2002
).
42.
S.
Kasztelan
and
J. B.
Moffat
,
J. Chem. Soc. Chem. Commun.
21
,
1663
(
1987
).
43.
G. N.
Kastanas
,
G. A.
Tsigdinos
, and
J.
Schwank
,
J. Chem. Soc. Chem. Commun.
19
,
1298
(
1988
).
44.
G. N.
Kastanas
,
G. A.
Tsigdinos
, and
J.
Schwank
,
J. Appl. Catal.
44
,
33
(
1988
).
45.
A.
Parmaliana
,
F.
Frusteri
,
D.
Miceli
,
A.
MezzaPica
,
M. S.
Scurrell
, and
N.
Giordano
,
Appl. Catal.
78
,
L7
(
1991
).
46.
S.
Qun
,
R. G.
Herman
, and
K.
Klier
,
Catal. Lett.
16
,
251
(
1992
).
47.
A.
Parmaliana
,
V.
Sokolovskii
,
D.
Miceli
,
F.
Arena
, and
N.
Giordano
,
J. Catal.
148
,
514
(
1994
).
48.
S.
Ozturk
,
I.
Onal
, and
S.
Senkan
,
Ind. Eng. Chem. Res.
39
,
250
(
2000
).
49.
A.
Satsuma
,
N.
Sugiyama
,
Y.
Kamiyama
, and
T.
Hattori
,
Chem. Lett.
10
,
1051
(
1997
).
50.
K.
Wakui
,
K. I.
Satoh
,
K.
Shiozawa
,
K. I.
Matano
,
K.
Suzuki
,
T.
Hayakawa
,
K.
Murata
,
Y.
Yoshimura
, and
F.
Mizukami
,
J. Jpn. Petrol. Inst.
43
,
286
(
2000
).
51.
S.
Wang
,
K.
Murata
,
T.
Hayakawa
,
S.
Hamakawa
, and
K.
Suzuki
,
Energy Fuels
14
,
899
(
2000
).
52.
V.
Ermini
,
E.
Finocchio
,
S.
Sechi
,
G.
Busca
, and
S.
Rossini
,
Appl. Catal., A
190
,
157
(
2000
).
53.
N.
Golub
,
V.
Gomonaj
,
P.
Gomonaj
, and
K.
Szekeresh
,
Adsorp. Sci. Technol.
17
,
403
(
1999
).
54.
G. E.
Vrieland
,
J. Catal.
111
,
1
(
1988
).
55.
Y.
Maki
,
K.
Sato
,
A.
Isobe
,
N.
Iwasa
,
S.
Fujita
,
M.
Shimokawabe
, and
N.
Takezawa
,
Appl. Catal., A
170
,
269
(
1998
).
56.
C. M.
Fougret
and
W. F.
Holderich
,
Appl. Catal., A
207
,
295
(
2001
).
57.
T. R.
Krawietz
,
P.
Ling
,
K. E.
Lotterhos
,
P. D.
Torres
,
D. H.
Barich
,
A.
Clearfield
, and
J. F.
Haw
,
J. Am. Chem. Soc.
120
,
8502
(
1998
).
58.
H. H.
Kung
,
Adv. Catal.
40
,
1
(
1994
).
59.
V. V.
Murashov
and
J.
Leszczynski
,
J. Phys. Chem. A
103
,
1228
(
1999
). This work involved DFT calculations using the GAUSSIAN 92 program and cluster models of silica and phosphate groups.
60.
J.
Haber
,
R.
Tokarz
, and
M.
Witko
,
ACS Symp. Ser.
638
,
249
(
1996
).
61.
Stishovite is a notable exception. Here each Si is octahedrally coordinated to six O neighbors, with each O atom bonded to three Si neighbors. We have not considered such structures in this work.
62.
The bridging O atoms exposed by the (100) surface bridge a surface Si with a subsurface Si. On the (101) surface, such atoms bridge two surface Si atoms. We have done some preliminary investigations on ODH mechanisms involving the bridging O atoms. This involves a temporary breaking of the bridge and reconnecting, which result in large structural relaxations several layers below the surface. Therefore, studying reaction mechanisms properly with such bridging O atoms would require a much thicker slab model (i.e., increased number of atomic layers), thereby implying considerably more computational effort than we could afford. Instead, we focused on a complete catalytic cycle involving the O atoms of the surface OH groups, which involves much less structural relaxation in the subsurface layers.
63.
A more accurate slab representation would have been to include the bottom O layer and cap the O atoms with H, as was done for the top surface. We did perform one such a calculation for the relaxed surface structure, and compared the relative positions for the top two Si layers, the top bridging O layer, and the top hydroxyl layer with the corresponding atoms in Fig. 2(c). The maximum positional deviation was less than 0.1 Å, and all the respective bond lengths and angles were within a few percent agreement. With the expanded slab, we also computed reaction heat and the activation barriers for the O-insertion step and the first ethane insertion step of the ODH cycle in absence of surface P (the first two steps of Fig. 7). The computed heats and barriers were within 3–5 kcal/mol of the results presented in Sec. IV. This appears to indicate that the bottom-layer O atoms play only a minor role in the surface structure and the reaction energetics presented in this work.
64.
B. C. Gates, Catalytic Chemistry (Wiley, New York, 1992), p. 355.
65.
More details about DMol3 can be found at http://www.accelrys.com/mstudio/dmol3.html
66.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
);
B.
Delley
,
J. Phys. Chem.
100
,
6107
(
1996
).
67.
B.
Delley
,
Int. J. Quantum Chem.
69
,
423
(
1998
).
68.
B.
Delley
,
J. Chem. Phys.
113
,
7756
(
2000
).
69.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
70.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
);
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
71.
T. A.
Halgren
and
W. A.
Lipscomb
,
Chem. Phys. Lett.
49
,
225
(
1977
).
72.
N. Govind, G. Fitzerald, and D. King-Smith (unpublished).
73.
CRC Handbook of Chemistry and Physics, 71st ed., edited by D. R. Lide (CRC, Boca Raton, FL, 1990), Secs. 5–8 and 5–9.
74.
A. C.
Scheiner
et al.,
J. Comp. Chem.
18
,
775
(
1997
).
75.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
76.
For a reaction not involving O2, the accuracy of the DMol3 parameters used in this work is much more impressive. For instance, the experimental reaction heat for the regular dehydrogenation reaction: C2H6=C2H4+H2 is 32.5 kcal/mol, while the computed heat with the DMol3 parameters used in this work is 33.5 kcal/mol.
77.
The surface relaxation into a quartz-like phase is not due to the thinness of the simulation slab, as we explicitly verified using an eight-layer slab model and fixing the bottom two layers.
78.
A surface P can also possibly go in other configurations, e.g., just a P adatom on the top of the surface. Such a P atom with unsaturated valence will bind strongly with incoming O2 and ethane molecules, thereby rendering release of ethylene and water energetically expensive. Similar problems can also occur with a threefold-coordinated P, as discussed later in Ref. 79.
79.
In the presence of P, one opens up the possibility of having a threefold-coordinated P with a single P–O–C2H5 bond sticking out of the surface and, P is known to like both valences: 5+ and 3+. However, the transition state for this reaction involves a threefold-coordinated, but a four-valent P with a double-bonded O, which leads to an energy barrier of ∼100 kcal/mol. Therefore, redox reactions with P appear unfavorable in the ODH cycle.
80.
In addition to the “local” insertion of oxygen as discussed here, there is a possibility that O2 might insert somewhere else and then migrate to the site of the reaction. We have explored such migration in the form of a surface and subsurface peroxide bond hopping between neighboring bonds shared by the same Si atom. The activation barrier for such a process is ∼50 kcal/mol, comparable to barriers involved in a local insertion of O2. Therefore, O migration cannot be ruled out as an alternative mechanism for the initial formation of peroxide bonds.
81.
58 kcal/mol is somewhat larger than the “typical” chemical activation energies which generally range from 20 to 50 kcal/mol. Reactions with energies below about 20 kcal/mol proceed readily at low temperatures and may be typified by biological processes. Reactions with activation energies greater than 50 kcal/mol are typically high temperature gas phase reactions such as combustion. Our experimental conditions are at the lower end of “high temperature.” If we raise the reactor temperature by 50–100 °C, gas phase homogeneous reactions become significant. The computed energy of 58 kcal/mol appears consistent with this experimental observation, i.e., 58 kcal/mol, and 650 °C are both on the low end of “high temperature.”
82.
V.
Robert
,
S. A.
Borshch
, and
B.
Bigot
,
Chem. Phys. Lett.
236
,
491
(
1995
).
83.
V.
Robert
,
S. A.
Borshch
, and
B.
Bigot
,
J. Phys. Chem.
100
,
580
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.