Time-resolved resonance Raman spectra are reported for different concentrations of CH2I2 in cyclohexane solution. The CH2II species is observed at low concentrations and it decays on the order of tens of nanoseconds to almost no signal at 100 ns and no other signal is observed up to 15 microseconds. Two species are observed at high concentrations. The first species CH2II spectra and lifetime are about the same as that found at low concentration of CH2I2 parent molecule and the second species is a CH2I2I molecular complex observed on the nanosecond to microsecond time scale and formed from bimolecular reaction of iodine atoms with CH2I2 molecules. The chemical reactivity of the CH2II species and the CH2I2I molecular complex towards carbon double bonds were investigated using density functional theory calculations. The structure and properties of the CH2II species and the CH2I2I molecular complex and their reaction towards ethylene were compared. The CH2II species and the CH2I2I both have weak I–I bonds that are the chromophores responsible for similar intense transient absorption bands. However, the geometry of the I–I bond relative to the C–I bond is noticeably different for these two species and this leads to distinctly different chemical reactivity toward carbon double bonds. The CH2II isomer readily reacts with ethylene to produce a cyclopropane product and I2 leaving group via a single step and low barrier to reaction while the CH2I2I molecular complex reacts with ethylene to form an ethylene/I intermediate and a CH2I2 leaving group. Probable ramifications for other related molecule–halogen atom complexes are briefly discussed.

1.
Th.
Class
and
K.
Ballschmiter
,
J. Atmos. Chem.
6
,
35
(
1988
).
2.
S.
Klick
and
K.
Abrahamsson
,
J. Geophys. Res.
97
,
12683
(
1992
).
3.
K. G.
Heumann
,
Anal. Chim. Acta
283
,
230
(
1993
).
4.
R. M.
Moore
,
M.
Webb
,
R.
Tokarczyk
, and
R.
Wever
,
J. Geophys. Res., [Oceans]
101
,
20899
(
1996
).
5.
J. C.
Mössinger
,
D. E.
Shallcross
, and
R. A.
Cox
,
J. Chem. Soc., Faraday Trans.
94
,
1391
(
1998
).
6.
C. T.
McElroy
,
C. A.
McLinden
, and
J. C.
McConnell
,
Nature (London)
397
,
338
(
1999
).
7.
L. J.
Carpenter
,
W. T.
Sturges
,
S. A.
Penkett
, and
P. S.
Liss
,
J. Geophys. Res., [Oceans]
104
,
1679
(
1999
).
8.
B.
Alicke
,
K.
Hebstreit
,
J.
Stutz
, and
U.
Platt
,
Nature (London)
397
,
572
(
1999
).
9.
H. E.
Simmons
and
R. D.
Smith
,
J. Am. Chem. Soc.
81
,
4256
(
1959
).
10.
D. C.
Blomstrom
,
K.
Herbig
, and
H. E.
Simmons
,
J. Org. Chem.
30
,
959
(
1965
).
11.
N. J.
Pienta
and
P. J.
Kropp
,
J. Am. Chem. Soc.
100
,
655
(
1978
).
12.
P. J.
Kropp
,
N. J.
Pienta
,
J. A.
Sawyer
, and
R. P.
Polniaszek
,
Tetrahedron
37
,
3229
(
1981
).
13.
P. J.
Kropp
,
Acc. Chem. Res.
17
,
131
(
1984
).
14.
E. C.
Friedrich
,
S. E.
Lunetta
, and
E. J.
Lewis
,
J. Org. Chem.
54
,
2388
(
1989
).
15.
S.
Durandetti
,
S.
Sibille
, and
J.
Pérchon
,
J. Org. Chem.
56
,
3255
(
1991
).
16.
J. M.
Concellón
,
P. L.
Bernad
, and
J. A.
Pérez-Andrés
,
Tetrahedron Lett.
39
,
1409
(
1998
).
17.
M.
Kawasaki
,
S. J.
Lee
, and
R.
Bersohn
,
J. Chem. Phys.
63
,
809
(
1975
).
18.
G.
Schmitt
and
F. J.
Comes
,
J. Photochem.
14
,
107
(
1980
).
19.
P. M.
Kroger
,
P. C.
Demou
, and
S. J.
Riley
,
J. Chem. Phys.
65
,
1823
(
1976
).
20.
J. B.
Koffend
and
S. R.
Leone
,
Chem. Phys. Lett.
81
,
136
(
1981
).
21.
S. R.
Cain
,
R.
Hoffman
, and
R.
Grant
,
J. Phys. Chem.
85
,
4046
(
1981
).
22.
S. J.
Lee
and
R.
Bersohn
,
J. Phys. Chem.
86
,
728
(
1982
).
23.
L. J.
Butler
,
E. J.
Hintsa
, and
Y. T.
Lee
,
J. Chem. Phys.
84
,
4104
(
1986
).
24.
L. J.
Butler
,
E. J.
Hintsa
, and
Y. T.
Lee
,
J. Chem. Phys.
86
,
2051
(
1987
).
25.
E. A. J.
Wannenmacher
,
P.
Felder
, and
J. R.
Huber
,
J. Chem. Phys.
95
,
986
(
1991
).
26.
G.
Baum
,
P.
Felder
, and
J. R.
Huber
,
J. Chem. Phys.
98
,
1999
(
1993
).
27.
U.
Marvet
and
M.
Dantus
,
Chem. Phys. Lett.
256
,
57
(
1996
).
28.
Q.
Zhang
,
U.
Marvet
, and
M.
Dantus
,
J. Chem. Phys.
109
,
4428
(
1998
).
29.
K.-W.
Jung
,
T. S.
Ahmadi
, and
M. A.
El-Sayed
,
Bull. Korean Chem. Soc.
18
,
1274
(
1997
).
30.
W.
Radloff
,
P.
Farmanara
,
V.
Stert
,
E.
Schreiber
, and
J. R.
Huber
,
Chem. Phys. Lett.
291
,
173
(
1998
).
31.
K.
Kavita
and
P. K.
Das
,
J. Chem. Phys.
112
,
8426
(
2000
).
32.
S. L.
Baughcum
,
H.
Hafmann
,
S. R.
Leone
, and
D.
Nesbitt
,
Faraday Discuss. Chem. Soc.
67
,
306
(
1979
).
33.
S. L.
Baughcum
and
S. R.
Leone
,
J. Chem. Phys.
72
,
6531
(
1980
).
34.
J.
Zhang
and
D. G.
Imre
,
J. Chem. Phys.
89
,
309
(
1988
).
35.
W. M.
Kwok
and
D. L.
Phillips
,
Chem. Phys. Lett.
235
,
260
(
1995
).
36.
S. Q.
Man
,
W. M.
Kwok
, and
D. L.
Phillips
,
J. Phys. Chem.
99
,
15705
(
1995
).
37.
W. M.
Kwok
and
D. L.
Phillips
,
J. Chem. Phys.
104
,
2529
(
1996
).
38.
W. M.
Kwok
and
D. L.
Phillips
,
J. Chem. Phys.
104
,
9816
(
1996
).
39.
S. Q.
Man
,
W. M.
Kwok
,
A. E.
Johnson
, and
D. L.
Phillips
,
J. Chem. Phys.
105
,
5842
(
1996
).
40.
F.
Duschek
,
M.
Schmitt
,
P.
Vogt
,
A.
Materny
, and
W.
Kiefer
,
J. Raman Spectrosc.
28
,
445
(
1997
).
41.
M.
Braun
,
A.
Materny
,
M.
Schmitt
,
W.
Kiefer
, and
V.
Engel
,
Chem. Phys. Lett.
284
,
39
(
1998
).
42.
X.
Zheng
and
D. L.
Phillips
,
Chem. Phys. Lett.
313
,
467
(
1999
).
43.
D. L.
Phillips
,
Prog. React. Kinet.
24
,
223
(
1999
).
44.
J. P.
Simons
and
P. E. R.
Tatham
,
J. Chem. Soc. A
1996
,
854
(
1966
).
45.
H.
Mohan
,
K. N.
Rao
, and
R. M.
Iyer
,
Radiat. Phys. Chem.
23
,
505
(
1984
).
46.
G.
Maier
and
H. P.
Reisenauer
,
Angew. Chem. Int. Ed. Engl.
25
,
819
(
1986
).
47.
G.
Maier
,
H. P.
Reisenauer
,
J.
Lu
,
L. J.
Scaad
, and
B. A.
Hess
, Jr.
,
J. Am. Chem. Soc.
112
,
5117
(
1990
).
48.
L.
Andrews
,
F. T.
Prochaska
, and
B. S.
Ault
,
J. Am. Chem. Soc.
101
,
9
(
1979
).
49.
H.
Mohan
and
R. M.
Iyer
,
Radiat. Eff.
39
,
97
(
1978
).
50.
H.
Mohan
and
P. N.
Moorthy
,
J. Chem. Soc., Perkin Trans. 2
2
,
277
(
1990
).
51.
B. J.
Schwartz
,
J. C.
King
,
J. Z.
Zhang
, and
C. B.
Harris
,
Chem. Phys. Lett.
203
,
503
(
1993
).
52.
K.
Saitow
,
Y.
Naitoh
,
K.
Tominaga
, and
Y.
Yoshihara
,
Chem. Phys. Lett.
262
,
621
(
1996
).
53.
A. N.
Tarnovsky
,
J.-L.
Alvarez
,
A. P.
Yartsev
,
V.
Sündstrom
, and
E.
Åkesson
,
Chem. Phys. Lett.
312
,
121
(
1999
).
54.
A. N.
Tarnovsky
,
M.
Wall
,
M.
Rasmusson
,
T.
Pascher
, and
E.
Åkesson
,
J. Chin. Chem. Soc. (Taipei)
47
,
769
(
2000
).
55.
A. N.
Tarnovsky
,
M.
Wall
,
M.
Gustafsson
,
N.
Lascoux
,
V.
Sundström
, and
E.
Åkesson
,
J. Phys. Chem. A
106
,
5999
(
2002
).
56.
X.
Zheng
and
D. L.
Phillips
,
J. Phys. Chem. A
104
,
6880
(
2000
).
57.
W. M.
Kwok
,
C.
Ma
,
A. W.
Parker
,
D.
Phillips
,
M.
Towrie
,
P.
Matousek
, and
D. L.
Phillips
,
J. Chem. Phys.
113
,
7471
(
2000
).
58.
X.
Zheng
and
D. L.
Phillips
,
Chem. Phys. Lett.
324
,
175
(
2000
).
59.
X.
Zheng
and
D. L.
Phillips
,
J. Chem. Phys.
113
,
3194
(
2000
).
60.
X.
Zheng
,
W. M.
Kwok
, and
D. L.
Phillips
,
J. Phys. Chem. A
104
,
10464
(
2000
).
61.
X.
Zheng
,
W.-H.
Fang
, and
D. L.
Phillips
,
J. Chem. Phys.
113
,
10934
(
2000
).
62.
X.
Zheng
,
C. W.
Lee
,
Y.-L.
Li
,
W.-H.
Fang
, and
D. L.
Phillips
,
J. Chem. Phys.
114
,
8347
(
2001
).
63.
W. M.
Kwok
,
C.
Ma
,
A. W.
Parker
,
D.
Phillips
,
M.
Towrie
,
P.
Matousek
,
X.
Zheng
, and
D. L.
Phillips
,
J. Chem. Phys.
114
,
7536
(
2001
).
64.
D. L.
Phillips
,
W.-H.
Fang
, and
X.
Zheng
,
J. Am. Chem. Soc.
123
,
4197
(
2001
).
65.
D. L.
Phillips
and
W.-H.
Fang
,
J. Org. Chem.
66
,
5890
(
2001
).
66.
Y.-L.
Li
,
K. H.
Leung
, and
D. L.
Phillips
,
J. Phys. Chem. A
105
,
10621
(
2001
).
67.
W.-H.
Fang
,
D. L.
Phillips
,
D.
Wang
, and
Y.-L.
Li
,
J. Org. Chem.
67
,
154
(
2002
).
68.
Y.-L.
Li
,
D. M.
Chen
,
D.
Wang
, and
D. L.
Phillips
,
J. Org. Chem.
67
,
4228
(
2002
).
69.
T. A.
Grover
and
G.
Porter
,
Proc. R. Soc. London, Ser. A
262
,
476
(
1961
).
70.
J. K.
Thomas
,
J. Phys. Chem.
71
,
1919
(
1967
).
71.
J. P.
Mittal
and
W. H.
Hamill
,
J. Am. Chem. Soc.
89
,
5749
(
1967
).
72.
U.
Bruhlmann
,
H.
Buchler
,
F.
Marchetti
, and
R. E.
Buhler
,
Chem. Phys. Lett.
21
,
412
(
1973
).
73.
L. C. T.
Shoute
and
P.
Neta
,
J. Phys. Chem.
95
,
4411
(
1991
).
74.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
75.
A. P.
Scott
and
L.
Radom
,
J. Phys. Chem.
100
,
16502
(
1996
).
76.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
77.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
78.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
79.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
80.
A. J.
Sadlej
,
Theor. Chim. Acta
79
,
123
(
1992
).
81.
A. J.
Sadlej
,
Theor. Chim. Acta
81
,
339
(
1992
).
82.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
);
C.
Gonzalez
and
H. B.
Schlegel
,
J. Phys. Chem.
94
,
5523
(
1990
).
83.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.
84.
See EPAPS Document No. E-JCPSA6-117–010242 for supporting information on the Cartesian coordinates, total energies and vibrational zero-point energies for selected stationary structures given in Fig. 5.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory/epaps/. See the EPAPS homepage for more information.
85.
Y.-L.
Li
and
D. L.
Phillips
,
Chem. Phys. Lett.
349
,
291
(
2001
).
86.
A. S.
Dneprovskii
,
D. V.
Kuznetsov
,
E. V.
Eliseenkov
,
B.
Fletcher
, and
J. M.
Tanko
,
J. Org. Chem.
63
,
8860
(
1998
).
87.
J. E.
Chateauneuf
,
J. Org. Chem.
64
,
1054
(
1999
).
88.
G. A.
Russell
,
J. Am. Chem. Soc.
79
,
2977
(
1957
).
89.
G. A.
Russell
,
J. Am. Chem. Soc.
80
,
4987
(
1958
).
90.
G. A.
Russell
,
J. Am. Chem. Soc.
80
,
4997
(
1958
).
91.
C.
Walling
and
M. F.
Mayahi
,
J. Am. Chem. Soc.
81
,
1485
(
1959
).
92.
P. S.
Skell
,
H. N.
Baxter
III
, and
C. K.
Taylor
,
J. Am. Chem. Soc.
105
,
120
(
1983
).
93.
P. S.
Skell
and
H. N.
Baxter
III
,
J. Am. Chem. Soc.
107
,
2823
(
1985
).
94.
N. J.
Bunce
,
K. U.
Ingold
,
J. P.
Landers
,
J.
Lusztyk
, and
J. C.
Scaiano
,
J. Am. Chem. Soc.
107
,
5464
(
1985
).
95.
P. S.
Skell
,
H. N.
Baxter
III
,
J. M.
Tanko
, and
V.
Chebolu
,
J. Am. Chem. Soc.
108
,
6300
(
1986
).
96.
N. J.
Bunce
,
R. B.
Joy
,
J. P.
Landers
, and
J. S.
Nakai
,
J. Org. Chem.
52
,
1155
(
1987
).
97.
V. A.
Aver’yanov
and
S. G.
Ruban
,
Kinet. Katal.
27
,
485
(
1986
).
98.
R.
Breslow
,
M.
Brandl
,
J.
Hunger
,
N.
Turro
,
K.
Cassidy
,
K.
Krogh-Jespersen
, and
J. D.
Westbrook
,
J. Am. Chem. Soc.
109
,
7204
(
1987
).
99.
C.
Walling
,
J. Org. Chem.
53
,
305
(
1988
).
100.
K. D.
Raner
,
J.
Lusztyk
, and
K. U.
InGold
,
J. Am. Chem. Soc.
110
,
3519
(
1988
).
101.
J. M.
Tanko
and
F. E.
Anderson
III
,
J. Am. Chem. Soc.
110
,
3525
(
1988
).
102.
K. D.
Raner
,
J.
Lusztyk
, and
K. U.
Ingold
,
J. Org. Chem.
53
,
5220
(
1988
).
103.
K. D.
Raner
,
J.
Lusztyk
, and
K. U.
Ingold
,
J. Phys. Chem.
93
,
564
(
1989
).
104.
K. D.
Raner
,
J.
Lusztyk
, and
K. U.
Ingold
,
J. Am. Chem. Soc.
111
,
3652
(
1989
).
105.
K. U.
Ingold
,
J.
Lusztyk
, and
K. D.
Raner
,
Acc. Chem. Res.
23
,
219
(
1990
).
106.
J. E.
Chateauneuf
,
J. Am. Chem. Soc.
115
,
1915
(
1993
).
107.
D.
Wang
,
Y.-L.
Li
,
W. S.
Ho
,
K. H.
Leung
, and
D. L.
Phillips
,
J. Org. Chem.
67
,
747
(
2002
).
108.
K.-D.
Asmus
,
Acc. Chem. Res.
12
,
436
(
1979
).
109.
K.-D.
Asmus
,
D.
Bahnemann
,
C.-H.
Fischer
, and
D.
Veltwisch
,
J. Am. Chem. Soc.
101
,
5322
(
1979
).
110.
S. A.
Chaudhri
and
K.-D.
Asmus
,
Angew. Chem. Int. Ed. Engl.
20
,
672
(
1981
).
111.
R. L.
Peterson
,
D. J.
Nelson
, and
M. C. R.
Symons
,
J. Chem. Soc., Perkin Trans. 2
1978
,
225
(
1978
).
112.
M. H.
Champagne
,
M. W.
Mullins
,
A.
Colson
, and
M. D.
Sevilla
,
J. Phys. Chem.
95
,
6488
(
1991
).
113.
L. K.
Steffen
,
R. S.
Glass
,
M.
Sabahi
,
G. S.
Wilson
,
C.
Schoneich
,
S.
Mahling
, and
K.-D.
Asmus
,
J. Am. Chem. Soc.
113
,
2141
(
1991
).
114.
D. K.
Maity
,
H.
Mohan
, and
J. P.
Mittal
,
J. Chem. Soc., Faraday Trans.
90
,
703
(
1994
).
115.
M. A.
James
,
M. L.
McKee
, and
A. J.
Illies
,
J. Am. Chem. Soc.
118
,
7836
(
1996
).
116.
M. D.
Sevilla
,
S.
Summerfield
,
I.
Eliezer
,
J.
Rak
, and
M. C. R.
Symons
,
J. Phys. Chem.
101
,
2910
(
1997
).
117.
Y.
Gaudel
,
L. J.
Marigneir
, and
J.
Belloni
,
J. Phys. Chem. A
101
,
8979
(
1997
).
118.
K.-D. Asmus, in Sulfur-Centered Radicals, edited by Z. B. Alfassi (Wiley, New York, 1999), p. 141.
119.
Y.
Gaudel
,
H.
Gelabert
, and
F.
Guilloud
,
J. Am. Chem. Soc.
122
,
5082
(
2000
).
120.
N. C.
Baird
,
J. Chem. Educ.
54
,
291
(
1977
).
121.
T.
Clark
,
J. Am. Chem. Soc.
110
,
1672
(
1988
).
122.
P. M. W.
Gill
,
P.
Weatherall
, and
L.
Radom
,
J. Am. Chem. Soc.
111
,
2782
(
1989
).
123.
A. J.
Illies
and
P.
Livant
,
J. Am. Chem. Soc.
113
,
1510
(
1991
).
124.
D. K.
Maity
and
H.
Mohan
,
Chem. Phys. Lett.
230
,
351
(
1994
).
125.
D. K.
Maity
,
H.
Mohan
, and
J. P.
Mittal
,
J. Phys. Chem.
99
,
12195
(
1995
).
126.
S. P.
de Visser
,
L. J.
de Koning
, and
N. M. M.
Nibbering
,
J. Phys. Chem.
99
,
15444
(
1995
).
127.
M. L.
McKee
,
A.
Nichols
, and
L.
Radom
,
J. Am. Chem. Soc.
118
,
10571
(
1996
).
128.
M.
Aida
,
F.
Inoue
, and
M.
Kaneko
,
J. Am. Chem. Soc.
119
,
12274
(
1997
).
129.
B.
Braı̈da
,
P. C.
Hirberty
, and
A.
Savin
,
J. Phys. Chem. A
102
,
7872
(
1998
).
130.
S. P.
de Visser
,
L. J.
de Koning
, and
N. M. M.
Nibbering
,
J. Am. Chem. Soc.
120
,
1517
(
1998
).
131.
S.
Humbel
,
I.
Cote
,
N.
Hoffmann
, and
J.
Bouquant
,
J. Am. Chem. Soc.
121
,
5507
(
1999
).
132.
B.
Braı̈da
,
Lauvergnat
, and
P. C.
Hiberty
,
J. Chem. Soc.
115
,
90
(
2001
).
133.
D. K.
Maity
,
J. Phys. Chem. A
106
,
5716
(
2002
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.