Pressure–volume–temperature measurements in phenylphthalein-dimethylether (PDE) are reported, in combination with recently published dynamic light scattering data obtained under high pressure. We discuss the role that volume and thermal effects play in controlling the dynamics in the vicinity of the glass transition. Although volume is not the unique thermodynamical parameter characterizing the relaxation dynamics in PDE, its contribution to the super-Arrhenius behavior of the relaxation times in the vicinity of the glass transition is remarkable. The contribution of volume to the temperature dependence of the relaxation times has been characterized by means of the ratio of the activation energy at constant volume to the enthalpy of activation at constant pressure, EV/HP. We point out that this quantity is correlated with the temperature behavior of the nonexponentiallity parameter, βKWW. Moreover, the τ(T,P) values were analyzed in terms of an extension of the Adam–Gibbs model. It was shown that this model gives a satisfactory interpretation of the pressure sensitivity of the dynamics (d log10(τ)/dP)|T in terms of thermodynamic properties of the material.

1.
J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
2.
C. A.
Angell
,
Science
67
,
1924
(
1995
).
3.
T.
Pakula
,
J. Mol. Liq.
86
,
109
(
2000
).
4.
P. B.
Macedo
and
T. A.
Litovitz
,
J. Chem. Phys.
42
,
245
(
1965
).
5.
K. L.
Ngai
,
J. Non-Cryst. Solids
275
,
7
(
2000
).
6.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
Millan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
7.
R. Richert and A. Blumen, Disorder Effects on Relaxational Processes (Springer, Heidelberg, 1993).
8.
G.
Williams
and
D. C.
Watts
,
Trans. Faraday Soc.
66
,
80
(
1970
).
9.
K. L.
Ngai
,
Comments Solid State Phys.
9
,
127
(
1979
).
10.
K. L. Ngai, in Basic Features of the Glassy State, edited by J. Colmenero and A. Alegria (World Scientific, Singapore, 1990), p. 265.
11.
K. L. Ngai, C. Cramer, T. Saatkamp, and K. Funke, in Proceedings of the Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, Pisa, Italy, 1995, edited by M. Giordano, M. P. Tosi, and D. Leperini (World Scientific, Singapore, 1996), p. 3.
12.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
13.
H.
Leyser
,
A.
Schulte
,
W.
Doster
, and
W.
Petry
,
Phys. Rev. E
51
,
5899
(
1995
).
14.
R. L.
Cook
,
H. E.
King
, Jr.
,
C.
Herbst
, and
D. R.
Cherschbach
,
J. Chem. Phys.
100
,
5178
(
1994
).
15.
M. L.
Ferrer
,
C.
Lawrence
,
B. G.
Demirjian
,
D.
Kivelson
,
C.
Alba-Simionecso
, and
G.
Tarjus
,
J. Chem. Phys.
109
,
8010
(
1998
).
16.
M.
Paluch
,
J. Chem. Phys.
115
,
10029
(
2001
).
17.
S.
Corezzi
,
M.
Lucchesi
,
P. A.
Rolla
,
S.
Capaccioli
,
G.
Gallone
, and
M.
Paluch
,
Philos. Mag. B
79
,
1953
(
1999
).
18.
A.
Patkowski
,
M.
Paluch
, and
H.
Kriegs
,
J. Chem. Phys.
117
,
2192
(
2002
).
19.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
28
,
139
(
1965
).
20.
C.
Alba-Simionesco
,
H.
Fujimori
,
D.
Morineau
, and
B.
Frick
,
Prog. Theor. Phys. Suppl.
126
,
229
(
1997
).
21.
P. Zoller and D. J. Walsh, Standard Pressure-Volume-Temperature Data for Polymers (Technomic, Lancaster, PA, 1995).
22.
P. G. Tait, Physics and Chemistry of the Voyage of H. M. S. Challenger (HMSO, London, 1888), Vol. 2, Part 4.
23.
D. W. Van Krevelen, Properties of Polymers (Elsevier Science, Amsterdam, 1997).
24.
H.
Schlosser
and
J.
Ferrante
,
J. Phys.: Condens. Matter
1
,
2727
(
1989
).
25.
M.
Paluch
,
C. M.
Roland
, and
A.
Best
,
J. Chem. Phys.
117
,
1188
(
2002
).
26.
A. K.
Doolitle
and
D. B.
Doolitle
,
J. Appl. Phys.
28
,
901
(
1957
).
27.
H.
Vogel
,
Phys. Z.
22
,
645
(
1921
);
G. S.
Fulcher
,
J. Am. Chem. Soc.
8
,
339
(
1923
).
28.
M.
Naoki
,
H.
Endou
, and
K.
Matsumoto
,
J. Phys. Chem.
91
,
4169
(
1987
).
29.
The reason why we used the fitting curves instead of using directly the experimental points was to improve the precision in determining the values of the quoted quantities. Note that the VFT equation very well reproduces the experimental data in the studied temperature range.
30.
K. L.
Ngai
,
L.
Bao
,
A. F.
Yee
, and
Ch. L.
Soles
,
Phys. Rev. Lett.
87
,
215901
(
2001
).
31.
R.
Casalini
,
S.
Capaccioli
,
M.
Lucchesi
,
P. A.
Rolla
, and
S.
Corezzi
,
Phys. Rev. E
63
,
031207
(
2001
).
32.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
33.
R.
Casalini
,
M.
Paluch
,
J. J.
Fontanella
, and
C. M.
Roland
,
J. Chem. Phys.
117
,
4091
(
2002
);
A. Patkawski, M. Paluch, and J. Gapinski, J. Non-Cryst. Solids (submitted).
34.
C is defined as the product of the critical configurational entropy, sc* and the potential barrier per particle opposing a cooperative rearrangement Δμ. Both these parameters are unknown and expected to do not change in the investigated range of pressure so for the sake of simplicity we used the parameter C.
35.
M.
Paluch
,
J.
Gapinski
,
A.
Patkowski
, and
E. W.
Fischer
,
J. Chem. Phys.
114
,
8048
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.