We analyze fluctuations in a “hybrid” atomistic model mimicking CO oxidation on nanoscale facets of metal(100) catalyst surfaces. The model incorporates a mean-field-like treatment of infinitely mobile CO, and a lattice-gas treatment of the superlattice ordering of immobile O. For an infinite system, it exhibits an Ising-type order–disorder transition for O, together with mean-field-like bistability disappearing at a cusp bifurcation. For finite systems, we use kinetic Monte Carlo simulation to study the probability distribution for the population of adsorbed species, from which bistability can be observed, together with fluctuation-induced transitions between the two stable states. An effective potential picture emerges from our analyses that can be used to quantify both the system size dependence of fluctuations and the transition rates. Thus, our hybrid atomistic model displays fluctuation behavior analogous to traditional mean-field models. This qualitative behavior can be understood by approximate treatments of population dynamics using master equations and Fokker–Planck equations. A generalized model with finite mobility of CO is also analyzed for comparison with the hybrid model. In contrast, it exhibits fluctuation behavior akin to equilibrium systems with Ising-type first-order transitions.

1.
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics (Springer-Verlag, Berlin, 1983).
2.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992).
3.
H. Malchow and L. Schimansky-Geier, Noise and Diffusion in Bistable Nonequilibrium Systems, Teubner Texte zur Physik (Teubner Verlag, Leipzig, 1986).
4.
M.
Hildebrand
and
A. S.
Mikhailov
,
J. Phys. Chem.
100
,
19089
(
1996
).
5.
M.
Hildebrand
,
Chaos
12
,
144
(
2002
).
6.
R.
Kapral
and
X.-G.
Wu
,
J. Phys. Chem.
100
,
18976
(
1996
).
7.
C.
Reichert
,
J.
Starke
, and
M.
Eiswirth
,
J. Chem. Phys.
115
,
4829
(
2001
).
8.
Y.
Suchorski
,
J.
Beben
, and
R.
Imbihl
,
Prog. Surf. Sci.
59
,
343
(
1998
).
9.
Y.
Suchorski
,
J.
Beben
, and
R.
Imbihl
,
Surf. Sci.
405
,
L477
(
1998
).
10.
Y.
Suchorski
,
J.
Beben
,
E. W.
James
,
J. W.
Evans
, and
R.
Imbihl
,
Phys. Rev. Lett.
82
,
1907
(
1999
).
11.
Y.
Suchorski
,
J.
Beben
, and
R.
Imbihl
,
Surf. Sci.
454–456
,
331
(
2000
).
12.
Y.
Suchorski
,
J.
Beben
,
R.
Imbihl
,
E. W.
James
,
D.-J.
Liu
, and
J. W.
Evans
,
Phys. Rev. B
63
,
165417
(
2001
).
13.
A. V.
Zhdanova
,
Phys. Rev. B
63
,
153410
(
2001
).
14.
V. P.
Zhdanov
and
B.
Kasemo
,
Surf. Sci.
496
,
251
(
2002
).
15.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
56
,
2553
(
1986
).
16.
J. W.
Evans
and
T. R.
Ray
,
Phys. Rev. E
50
,
4302
(
1994
).
17.
M.
Tammaro
,
M.
Sabella
, and
J. W.
Evans
,
J. Chem. Phys.
103
,
10277
(
1995
).
18.
J. W.
Evans
,
D.-J.
Liu
, and
M.
Tammaro
,
Chaos
12
,
131
(
2002
).
19.
M.
Silverberg
,
A.
Ben-Shaul
, and
F.
Rebentrost
,
J. Chem. Phys.
83
,
6501
(
1985
).
20.
M.
Silverberg
, and
A.
Ben-Shaul
,
J. Chem. Phys.
87
,
3178
(
1987
).
21.
M.
Silverberg
and
A.
Ben-Shaul
,
Chem. Phys. Lett.
134
,
491
(
1987
).
22.
E. W.
James
,
C.
Song
, and
J. W.
Evans
,
J. Chem. Phys.
111
,
6579
(
1999
).
23.
This means that the impingement rate for O2 (gas) per 2NN pair of sites is pO2/2 since there are two pairs per lattice site.
24.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. Lett.
84
,
955
(
2000
).
25.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
62
,
2134
(
2000
).
26.
J. V.
Barth
,
Surf. Sci. Rep.
40
,
75
(
2000
).
27.
N.
Pavlenko
,
J. W.
Evans
,
D.-J.
Liu
, and
R.
Imbihl
,
Phys. Rev. E
65
,
016121
(
2002
).
28.
V. P.
Zhdanov
and
B.
Kasemo
,
Surf. Sci.
412/413
,
527
(
1998
).
29.
N. Pavlenko et al. (unpublished);
D.-J. Liu et al. (unpublished).
30.
R.
Kubo
,
K.
Matsuo
, and
K.
Kitahara
,
J. Stat. Phys.
9
,
51
(
1973
).
31.
M. E.
Fisher
and
A. N.
Berker
,
Phys. Rev. B
26
,
2507
(
1982
).
32.
H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed. Springer Series in Synergetics (Springer-Verlag, Berlin, 1989).
33.
R. L. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963), Vol. 1, revised English edition, translated from the Russian by Richard A. Silverman.
34.
R. Graham, in Stochastic Nonlinear Systems in Physics, Chemistry, and Biology, edited by L. Arnold and R. Lefever (Springer, Berlin, 1981), p. 202.
35.
P.
Hanggi
,
H.
Grabert
,
P.
Talkner
, and
H.
Thomas
,
Phys. Rev. A
29
,
371
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.