Small doubly charged negative cluster ions OCn2− were studied both by experimental and by theoretical means. In the experiments these dianions (with n=5–19) were produced by sputtering of a graphite specimen with a 14.5 keV Cs+ ion beam at an elevated oxygen partial pressure in the vicinity of the sample’s surface. The dianions and the corresponding singly charged OCn(n⩽21) ions as well as homonuclear carbon dianions Cn2− were detected in a double-focusing mass spectrometer. The yields of the doubly and singly charged mixed oxygen-carbon ions increase with the ratio of the O2 arrival rate to the Cs+ flux density. The abundance distribution of OCn2− exhibits distinct even–odd alternations with the number of C atoms in the molecule. The flight time through the mass spectrometer of ∼15–25 μs establishes a lower limit with respect to the intrinsic lifetimes of the doubly charged ions. The theoretical studies investigated OCn2− dianions with n=5–8; the geometries of these species were optimized and the electronic stability was examined by the calculation of the electron detachment energies. In agreement with the low yield observed experimentally, OC52− is found to be weakly stable, whereas OC62−,OC72−, and OC82− are electronically stable gas-phase ions. In particular the latter is characterized by a large number of stable isomers.

1.
J.
Kalcher
and
A. F.
Sax
,
Chem. Rev.
94
,
2291
(
1994
).
2.
M. K.
Scheller
,
R. N.
Compton
, and
L. S.
Cederbaum
,
Science
270
,
1160
(
1995
).
3.
A. I.
Boldyrev
,
M.
Gutowski
, and
J.
Simons
,
Acc. Chem. Res.
29
,
497
(
1996
).
4.
L.-S.
Wang
and
X.-B.
Wang
,
J. Phys. Chem. A
104
,
1978
(
2000
).
5.
A.
Dreuw
and
L. S.
Cederbaum
,
Chem. Rev.
102
,
181
(
2002
).
6.
R.
Janoschek
,
Z. Anorg. Allg. Chem.
616
,
101
(
1992
).
7.
M. K.
Scheller
and
L. S.
Cederbaum
,
J. Phys. B: At. Mol. Opt. Phys.
25
,
2257
(
1992
).
8.
T.
Sommerfeld
,
J. Phys. Chem. A
104
,
8806
(
2000
).
9.
A. I.
Boldyrev
and
J.
Simons
,
J. Phys. Chem.
98
,
2298
(
1994
).
10.
A. T.
Blades
and
P.
Kebarle
,
J. Am. Chem. Soc.
116
,
10761
(
1994
).
11.
R. C.
Dougherty
,
J. Chem. Phys.
50
,
1896
(
1969
).
12.
R. L.
Hettich
,
R. N.
Compton
, and
R. H.
Ritchie
,
Phys. Rev. Lett.
67
,
1242
(
1991
).
13.
P. A.
Limbach
,
L.
Schweikhard
,
K. A.
Cowen
,
M. T.
McDermott
,
A. G.
Marshall
, and
J. V.
Coe
,
J. Am. Chem. Soc.
113
,
6795
(
1991
).
14.
C.
Jin
,
R. L.
Hettich
,
R. N.
Compton
,
A.
Tuinman
,
A.
Derecskei-Kovacs
,
D. S.
Marynick
, and
B. I.
Dunlap
,
Phys. Rev. Lett.
73
,
2821
(
1994
).
15.
R. N.
Compton
,
A. A.
Tuinman
,
C. E.
Klots
,
M. R.
Pederson
, and
D. C.
Patton
,
Phys. Rev. Lett.
78
,
4367
(
1997
).
16.
C.
Stoermer
,
J.
Friedrich
, and
M. M.
Kappes
,
Int. J. Mass. Spectrom.
206
,
63
(
2001
).
17.
A.
Herlert
,
S.
Krückeberg
,
L.
Schweikhard
,
M.
Vogel
, and
C.
Walther
,
Phys. Scr.
,
T80
,
200
(
1999
).
18.
L.
Schweikhard
,
A.
Herlert
,
S.
Krückeberg
,
M.
Vogel
, and
C.
Walther
,
Philos. Mag. B
79
,
1343
(
1999
).
19.
C.
Yannouleas
,
U.
Landman
,
A.
Herlert
, and
L.
Schweikhard
,
Phys. Rev. Lett.
86
,
2996
(
2001
).
20.
S. N.
Schauer
,
P.
Williams
, and
R. N.
Compton
,
Phys. Rev. Lett.
65
,
625
(
1990
).
21.
H.
Gnaser
and
H.
Oechsner
,
Nucl. Instrum. Methods Phys. Res. B
82
,
518
(
1993
).
22.
D.
Calabrese
,
A. M.
Covington
, and
J. S.
Thompson
,
J. Chem. Phys.
105
,
2936
(
1996
).
23.
R.
Middleton
and
J.
Klein
,
Nucl. Instrum. Methods Phys. Res. B
123
,
532
(
1997
).
24.
H.
Gnaser
,
Nucl. Instrum. Methods Phys. Res. B
149
,
38
(
1999
).
25.
H.
Gnaser
,
Phys. Rev. A
60
,
R2645
(
1999
).
26.
J.
Klein
and
R.
Middleton
,
Nucl. Instrum. Methods Phys. Res. B
159
,
8
(
1999
).
27.
R.
Middleton
and
J.
Klein
,
Phys. Rev. A
60
,
3515
(
1999
).
28.
H. Gnaser Nucl. Instrum. Methods Phys. Res. B. (in press).
29.
X.-B.
Wang
and
L.-S.
Wang
,
J. Chem. Phys.
111
,
4497
(
1999
).
30.
X.-B.
Wang
and
L.-S.
Wang
,
Phys. Rev. Lett.
83
,
3402
(
1999
).
31.
P.
Weis
,
O.
Hampe
,
S.
Gilb
, and
M. M.
Kappes
,
Chem. Phys. Lett.
321
,
426
(
2000
).
32.
X.-B.
Wang
and
L.-S.
Wang
,
J. Phys. Chem. A
104
,
4429
(
2000
).
33.
L.-S.
Wang
,
C.-F.
Ding
,
X.-B.
Wang
, and
J. B.
Nicholas
,
Phys. Rev. Lett.
81
,
2667
(
1998
).
34.
C.-F.
Ding
,
X.-B.
Wang
, and
L.-S.
Wang
,
J. Phys. Chem. A
102
,
8633
(
1998
).
35.
X.-B.
Wang
,
C.-F.
Ding
, and
L.-S.
Wang
,
Chem. Phys. Lett.
307
,
391
(
1999
).
36.
G. J.
Schulz
,
Rev. Mod. Phys.
45
,
378
(
1973
);
G. J.
Schulz
,
Rev. Mod. Phys.
45
,
423
(
1973
).
37.
T.
Sommerfeld
,
Phys. Rev. Lett.
85
,
956
(
2000
).
38.
H. B.
Pedersen
,
N.
Djurić
,
M. J.
Jensen
,
D.
Kella
,
C. P.
Safvan
,
H. T.
Schmidt
,
L.
Vejby-Christensen
, and
L. H.
Andersen
,
Phys. Rev. A
60
,
2882
(
1999
).
39.
H.-G.
Weikert
,
L. S.
Cederbaum
,
F.
Tarantelli
, and
A. I.
Boldyrev
,
Z. Phys. D: At., Mol. Clusters
18
,
299
(
1991
).
40.
H.-G.
Weikert
and
L. S.
Cederbaum
,
J. Chem. Phys.
99
,
8877
(
1993
).
41.
A.
Dreuw
,
T.
Sommerfeld
, and
L. S.
Cederbaum
,
Angew. Chem. Int. Ed. Engl.
36
,
1889
(
1997
);
A.
Dreuw
,
T.
Sommerfeld
, and
L. S.
Cederbaum
,
J. Chem. Phys.
109
,
2727
(
1998
).
42.
M. K.
Scheller
and
L. S.
Cederbaum
,
J. Phys. B.
25
,
2257
(
1992
).
43.
M. K.
Scheller
and
L. S.
Cederbaum
,
Chem. Phys. Lett.
216
,
141
(
1993
);
M. K.
Scheller
and
L. S.
Cederbaum
,
J. Chem. Phys.
99
,
441
(
1993
).
44.
T.
Sommerfeld
,
M. K.
Scheller
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
209
,
216
(
1993
);
T.
Sommerfeld
,
M. K.
Scheller
, and
L. S.
Cederbaum
,
J. Phys. Chem.
98
,
8914
(
1994
).
45.
A.
Dreuw
,
H.
Schweinsberg
, and
L. S.
Cederbaum
,
J. Phys. Chem. A
106
,
1406
(
2002
).
46.
A.
Dreuw
and
L. S.
Cederbaum
,
J. Chem. Phys.
112
,
7400
(
2000
);
A.
Dreuw
and
L. S.
Cederbaum
,
Phys. Rev. A
63
,
012501
(
2001
);
A.
Dreuw
and
L. S.
Cederbaum
,
Phys. Rev. A
63
,
049904
(E) (
2001
).
47.
X.-B.
Wang
,
C.-F.
Ding
, and
L.-S.
Wang
,
Phys. Rev. Lett.
81
,
3351
(
1998
).
48.
H.
Gnaser
,
Phys. Rev. A
66
,
013203
(
2002
).
49.
H. Gnaser, Low-Energy Ion Irradiation of Solid Surfaces (Springer, Berlin, 1999).
50.
M. L. Yu, in Sputtering by Particle Bombardment III, edited by R. Behrisch and K. Wittmaack (Springer, Berlin, 1991), p. 91.
51.
H.
Gnaser
,
Phys. Rev. B
54
,
16456
(
1996
).
52.
H.
Gnaser
,
Phys. Rev. B
63
,
045415
(
2001
).
53.
H. N. Migeon, C. Le Pipec, and J. J. Le Goux, in Secondary Ion Mass Spectrometry SIMS V, edited by A. Benninghoven, R. J. Colton, D. S. Simons, and H. W. Werner (Springer, Berlin, 1986), p. 155.
54.
H.
Gnaser
,
Phys. Rev. A
56
,
R2518
(
1997
).
55.
Aces2, a program product developed by the Quantum Theory Project, University of Florida. J. F. Stanton, J. Gauss, J. D. Watts et al., Integral packages included are VMOL (J. Almöf and P. R. Taylor) and ABACUS (T. Helgaker, H. J. A. Jensen, P. Jorgensen, J. Olsen, and P. R. Taylor).
56.
T. Dunning and P. J. Hay, Modern Theoretical Chemistry (Plenum, New York, 1976).
57.
A.
Dreuw
and
L. S.
Cederbaum
,
J. Phys. Chem. A
105
,
10577
(
2001
).
58.
H. M.
Urbassek
and
W. O.
Hofer
,
K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
43
,
97
(
1993
).
59.
O.
Dogounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Chem. Phys.
109
,
87
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.