Electron correlation effects are often invoked as possible causes of differences between experimental and Hartree–Fock Compton profiles. The shape as well as the magnitude of these differences can be very different, depending on materials. In order to illustrate this, we performed post Hartree–Fock calculations on small LiH and MgO ionic clusters. The subsequent correlation corrections significantly improve Compton profiles and structure factors versus their experimentally determined counterparts. The opposite trends observed at small momenta for experimental deviations to Hartree–Fock Compton profiles of LiH and MgO are then qualitatively explained through an empirical model for a confined two-electron anion. This model further suggests that the confinement of the embedded anion favors the angular correlation mechanism.

1.
P. Coppens, X-ray Charge Densities and Chemical Bonding (Oxford University Press, Oxford, UK, 1997).
2.
Momentum densities can be accessed and analyzed through Compton scattering. See
J. M.
Gillet
,
C.
Fluteaux
, and
P. J.
Becker
,
Phys. Rev. B
60
,
2345
(
1999
) and references therein.
3.
E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic, New York, 1976).
4.
E. Bec, Ph.D. thesis, Ecole Centrale Paris, France, 1998.
5.
N. K.
Hansen
and
P.
Coppens
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
34
,
909
(
1978
).
6.
P. Becker, Electron and Magnetization Densities in Molecules and Crystals (Plenum, New York, 1980).
7.
R. M. Erdahl and V. Smith, Jr., Density Matrices and Density Functionals (Riedel, New York, 1987).
8.
B. G. Williams, Compton Scattering (McGraw-Hill, New York, 1977).
9.
P. J.
Becker
,
J. M.
Gillet
,
P.
Cortona
, and
S.
Ragot
,
Theor. Chem. Acc.
105
,
284
(
2001
).
10.
K.
Doll
,
M.
Dolg
, and
P.
Fulde
,
Phys. Rev. B
52
,
4842
(
1995
).
11.
K.
Doll
,
M.
Dolg
, and
H.
Stoll
,
Phys. Rev. B
54
,
13529
(
1996
).
12.
A.
Shukla
,
M.
Dolg
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B
60
,
5211
(
1999
).
13.
See, for example, the possibilities offered by R. Dovesi, V. R. Saunders, C. Roetti, M. Causà, N. M. Harrison, R. Orlando, and E. Aprà, Crystal95 User’s Manual (University of Torino, Torino, 1996).
14.
P. Fulde, Electron Correlations in Molecules and Solids, 2nd ed. (Springer-Verlag, New York, 1993).
15.
See R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, UK, 1989).
16.
L.
Lam
and
P. M.
Platzman
,
Phys. Rev. B
9
,
5122
(
1974
);
L.
Lam
and
P. M.
Platzman
,
Phys. Rev. B
9
,
5128
(
1974
).
17.
The same trend is to be seen when using Aikala’s measurements:
O.
Aikala
,
T.
Paakari
, and
S.
Manninen
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
38
,
155
(
1982
).
18.
See Ref. 10 for a comparison of estimated intra and inter ionic correlation energies in MgO and CaO.
19.
All calculations were performed with the Gaussian94 code, Revision D.4, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. Gaussian, Inc., Pittsburgh, PA, 1995.
20.
H. M.
Evjen
,
Phys. Rev.
39
,
675
(
1932
).
21.
Compton profiles were computed by Fourier transforming the autocorrelation functions, see
P.
Kaijser
, Jr.
and
V. H.
Smith
,
Adv. Quantum Chem.
10
,
37
(
1977
).
22.
S.
Ragot
,
J. M.
Gillet
, and
P. J.
Becker
,
Phys. Rev. B
65
,
235115
(
2002
).
23.
S. Ragot, Ph.D. thesis, Ecole Centrale Paris, France, 2001.
24.
R.
Dovesi
et al.,
Phys. Rev. B
29
,
3591
(
1984
).
25.
Configuration interaction with single and double excitations plus a quadratic correction: see Ref. 19 for further information.
26.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, UK, 1990).
27.
See
O. L.
Anderson
,
J. Phys. Chem. Solids
27
,
547
(
1966
) and Ref. 12.
28.
L. R.
Heinrich
,
Astrophys. J.
99
,
59
(
1944
).
29.
L. Bellaiche, thesis, University Paris VI, 1994.
30.
From the usual definition of correlation energy in quantum chemistry: see Ref. 3.
31.
G.
Vidal-Valat
,
J. P.
Vidal
,
K.
Kurki-Suonio
, and
R.
Kurki-Suonio
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
A48
,
46
(
1992
).
32.
S. Ragot, J. M. Gillet, and P. J. Becker (unpublished).
33.
M. I.
McCarthy
and
N. M.
Harrison
,
Phys. Rev. B
49
,
8574
(
1994
).
34.
N. M.
Harrison
and
V. R.
Saunders
,
J. Phys.: Condens. Matter
4
,
3873
(
1992
).
35.
E. R.
Davidson
and
S. J.
Chakravorty
,
J. Phys. Chem.
100
,
6167
(
1996
).
36.
H.
Meyer
,
T.
Müller
, and
A.
Schweig
,
J. Mol. Struct.: THEOCHEM
360
,
55
(
1996
).
37.
The cc-pV6Z basis sets was truncated after p-type orbitals for feasibility, the original basis-set was obtained from the Extensible Computational Chemistry Environment Basis Set Database. Contact David Feller or Karen Schuchardt for further information. Electronic mail: df_feller@pnl.gov (http://www.emsl.pnl.gov:2080/forms/basisform.html)
38.
C. Fluteaux, Ph.D. thesis, Ecole Centrale Paris, 1999.
39.
J. M.
Gillet
and
P.
Cortona
,
Phys. Rev. B
60
,
8569
(
1999
).
40.
J. M.
Gillet
,
P. J.
Becker
, and
P.
Cortona
,
Phys. Rev. B
63
,
235115
(
2001
).
41.
J. M.
Zuo
,
M.
O’Keefe
,
P.
Rez
, and
J. C. H.
Spence
,
Phys. Rev. Lett.
78
,
4777
(
1997
).
42.
R.
Destro
,
R.
Bianchi
,
C.
Gatti
, and
F.
Merati
,
Chem. Phys. Lett.
186
,
7
(
1991
).
43.
P.
Cortona
,
Phys. Rev. B
46
,
2008
(
1992
).
44.
R. E.
Watson
,
Phys. Rev.
111
,
1108
(
1999
).
45.
See the early work of
Eckart
,
Phys. Rev.
36
,
878
(
1930
).
46.
In the fashion of
G. R.
Taylor
and
R. G.
Parr
,
Proc. Natl. Acad. Sci. U.S.A.
38
,
154
(
1952
).
47.
J. C.
Slater
,
Phys. Rev.
31
,
333
(
1928
).
48.
E. A.
Hylleraas
,
Z. Phys.
48
,
469
(
1928
).
49.
F.
Arias de Saavedra
,
E.
Buendía
, and
F. J.
Gálvez
,
Z. Phys. D: At., Mol. Clusters
38
,
25
(
1996
).
50.
A. N.
Tripathi
,
R. P.
Sagar
,
R. O.
Esquivel
, and
V. H.
Smith
, Jr.
,
Phys. Rev. A
45
,
4385
(
1992
).
51.
J. M.
Gillet
,
P. J.
Becker
, and
G.
Loupias
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
51
,
405
(
1995
).
52.
A.
Issolah
,
B.
Levy
,
A.
Beswick
, and
G.
Loupias
,
Phys. Rev. A
38
,
4509
(
1988
).
53.
L.
Bellaı̈che
and
B.
Lévy
,
Phys. Rev. B
54
,
1575
(
1996
).
54.
C.
Fluteaux
,
J. M.
Gillet
, and
P. J.
Becker
,
J. Phys. Chem. Solids
61
,
369
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.