Dissociative photodetachment (DPD) of the molecular anion HOCO is used to probe the potential energy surface for the OH+COH+CO2 reaction. The HOCO anion, formed by electron impact on an expansion of CH4+N2O+CO, is characterized for the first time in these experiments by photoelectron spectroscopy and photoelectron angular distribution measurements. Photodetachment of HOCO is found to produce H+CO2+e and OH+CO+e products in addition to stable HOCO radicals. Ab initio calculations of the energetics and structure of HOCO and HOCO are consistent with the experimental results and show that photodetachment to the ground electronic HOCO surface samples the vicinity of the HOCO well. The product translational energy distributions observed on the ground state surface are consistent with unimolecular decomposition out of the HOCO well. In addition, direct DPD to a repulsive excited state of HOCO, correlating to ground state OH+CO products is observed.

1.
C. T. Bowman, in Fossil Fuel Combustion, edited by W. Bartok and A. F. Sarofim (Wiley, New York, 1991).
2.
R. P. Wayne, Chemistry of Atmospheres, 2nd ed. (Clarendon, Oxford, 1991).
3.
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
,
D.
Stranges
, and
G. G.
Volpi
,
J. Chem. Phys.
98
,
8341
(
1993
).
4.
M. J.
Frost
,
P.
Sharkey
, and
I. W. M.
Smith
,
Faraday Discuss.
91
,
305
(
1991
).
5.
G. W.
Flynn
and
R. E.
Weston
, Jr.
,
J. Phys. Chem.
97
,
8116
(
1993
).
6.
M.
Brouard
,
D. W.
Hughes
,
K. S.
Kalogerakis
, and
J. P.
Simons
,
J. Phys. Chem. A
102
,
9559
(
1998
).
7.
M.
Brouard
,
D. W.
Hughes
,
K. S.
Kalogerakis
, and
J. P.
Simons
,
J. Chem. Phys.
112
,
4557
(
2000
).
8.
N. F.
Scherer
,
C.
Sipes
,
R. B.
Bernstein
, and
A. H.
Zewail
,
J. Chem. Phys.
92
,
5239
(
1990
).
9.
S. K.
Shin
,
C.
Wittig
, and
W. A.
Goddard
,
J. Phys. Chem.
95
,
8048
(
1991
).
10.
S. I.
Ionov
,
G. A.
Brucker
,
C.
Jaques
,
L.
Valachovic
, and
C.
Wittig
,
J. Chem. Phys.
99
,
6553
(
1993
).
11.
M. I.
Lester
,
B. V.
Pond
,
M. D.
Marshall
,
D. T.
Anderson
,
L. B.
Harding
, and
A. F.
Wagner
,
Faraday Discuss.
118
,
373
(
2001
).
12.
T. J.
Sears
,
W. M.
Fawzy
, and
P. M.
Johnson
,
J. Chem. Phys.
97
,
3996
(
1992
).
13.
J. T.
Petty
and
C. B.
Moore
,
J. Mol. Spectrosc.
161
,
149
(
1993
).
14.
M. E.
Jacox
,
J. Chem. Phys.
88
,
4598
(
1988
).
15.
T. V.
Duncan
and
C. E.
Miller
,
J. Chem. Phys.
113
,
5138
(
2000
).
16.
B.
Ruscic
and
M.
Litorja
,
Chem. Phys. Lett.
316
,
45
(
2000
).
17.
M.
Aoyagi
and
S.
Kato
,
J. Chem. Phys.
88
,
6409
(
1988
).
18.
K.
Kudla
,
G. C.
Schatz
, and
A. F.
Wagner
,
J. Chem. Phys.
95
,
1635
(
1991
).
19.
D. C.
Clary
and
G. C.
Schatz
,
J. Chem. Phys.
99
,
4578
(
1993
).
20.
M. I.
Hernandez
and
D. C.
Clary
,
J. Chem. Phys.
101
,
2779
(
1994
).
21.
K. S.
Bradley
and
G. C.
Schatz
,
J. Chem. Phys.
106
,
8464
(
1997
).
22.
F. N.
Dzegilenko
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
511
(
1998
).
23.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
103
,
6512
(
1995
).
24.
D. A.
McCormack
and
G. J.
Kroes
,
J. Chem. Phys.
116
,
4184
(
2002
).
25.
Y.
Li
and
J. S.
Francisco
,
J. Chem. Phys.
113
,
7963
(
2000
).
26.
H.-G.
Yu
,
J. T.
Muckerman
, and
T. J.
Sears
,
Chem. Phys. Lett.
349
,
547
(
2001
).
27.
E. H.
Kim
,
S. E.
Bradforth
,
D. W.
Arnold
,
R. B.
Metz
, and
D. M.
Neumark
,
J. Chem. Phys.
103
,
7801
(
1995
).
28.
T. G.
Clements
and
R. E.
Continetti
,
J. Chem. Phys.
115
,
5345
(
2001
).
29.
K. A.
Hanold
,
C. R.
Sherwood
,
M. C.
Garner
, and
R. E.
Continetti
,
Rev. Sci. Instrum.
66
,
5507
(
1995
).
30.
K. A.
Hanold
,
A. K.
Luong
,
T. G.
Clements
, and
R. E.
Continetti
,
Rev. Sci. Instrum.
70
,
2268
(
1999
).
31.
J. A.
Davies
,
J. E.
LeClaire
,
R. E.
Continetti
, and
C. C.
Hayden
,
J. Chem. Phys.
111
,
1
(
1999
).
32.
L. S.
Alconcel
,
H. J.
Deyerl
,
M.
DeClue
, and
R. E.
Continetti
,
J. Am. Chem. Soc.
123
,
3125
(
2001
).
33.
C. R.
Sherwood
and
R. E.
Continetti
,
Chem. Phys. Lett.
258
,
171
(
1996
).
34.
B. L.
Peko
and
T. M.
Stephen
,
Nucl. Instrum. Methods Phys. Res. B
171
,
597
(
2000
).
35.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
36.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
7382
(
1988
).
37.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
38.
J. S.
Francisco
,
J. Chem. Phys.
107
,
9039
(
1997
).
39.
P. A.
Schulz
,
R. D.
Mead
,
P. L.
Jones
, and
W. C.
Lineberger
,
J. Chem. Phys.
77
,
1153
(
1982
).
40.
M. W. Chase, Jr., C. A. Davies, J. R. Downy, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Suppl. 1 ed. (American Institute of Physics, New York, 1985).
41.
K. A.
Hanold
and
R. E.
Continetti
,
Chem. Phys.
239
,
493
(
1998
).
42.
H.-J.
Deyerl
,
A. K.
Luong
,
T. G.
Clements
, and
R. E.
Continetti
,
Faraday Discuss.
115
,
147
(
2000
).
43.
H.-J.
Deyerl
,
T. G.
Clements
,
A. K.
Luong
, and
R. E.
Continetti
,
J. Chem. Phys.
115
,
6931
(
2001
).
44.
R. N.
Zare
,
Mol. Photochem.
4
,
1
(
1972
).
45.
L. M.
Smith
and
D. R.
Keefer
,
J. Quant. Spectrosc. Radiat. Transf.
39
,
367
(
1988
).
46.
R. N.
Strickland
and
D. W.
Chandler
,
Appl. Opt.
30
,
1811
(
1991
).
47.
C.
Bordas
,
F.
Pauling
,
H.
Helm
, and
D. L.
Huestis
,
Rev. Sci. Instrum.
67
,
2257
(
1996
).
48.
H.-J.
Deyerl
,
L. S.
Alconcel
, and
R. E.
Continetti
,
J. Phys. Chem. A
105
,
552
(
2001
).
49.
J. B.
Kim
,
P. G.
Wenthold
, and
W. C.
Lineberger
,
J. Chem. Phys.
108
,
830
(
1998
).
50.
T. Baer and W. L. Hase, Unimolecular Reaction Dynamics (Oxford, New York, 1996).
51.
W. L.
Hase
and
D. L.
Bunker
,
QCPE
11
,
234
(
1973
).
52.
M. J.
Frisch
,
H. F.
Schaefer
III
, and
J. S.
Binkley
,
J. Phys. Chem.
89
,
2192
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.