The origin of the vibrational coupling that was observed between the CC and CN stretching modes of acetonitrile by doubly vibrationally enhanced (DOVE) IR–IR–Vis four-wave-mixing (IIV-FWM) spectroscopy is investigated by various ab initio calculations including DFT(B3LYP), HF, and MP2 methods with the same baisis set, 6-311++G**. The linear and nonlinear susceptibilities of the combination bands and cross peaks are numerically calculated and compared with the experimental values, and the agreement between ab initio results and experiments are quantitative. By separately analyzing the contributions from each coherence pathway to the vibrational coupling of the CC and CN stretching modes, a quantitative understanding of the DOVE IIV-FWM signals is possible. Although the direct coupling of the CC and CN stretching modes by mechanical and electric anharmonicity coupling is sizable, the CH bending and CH stretching modes are also involved in the vibrational coupling between CC and CN stretching modes as promoting modes. The numerically simulated two-dimensional (2D) DOVE spectrum for a CH3CN sample is presented and compared with experiment. It is found that the interference among distinctive pathways plays a central role in describing the distorted, asymmetric shape of the 2D DOVE spectrum. In addition, the IIV-FWM cross peak associated with the vibrational coupling between the CH and CN stretching mode is also calculated and its magnitude is compared with that of the CC and CN stretching modes.

1.
M. Cho, “Two-dimensional vibrational spectroscopy,” in Advances in Multi-photon Processes and Spectroscopy, edited by S. H. Lin, A. A. Villaeys, and Y. Fujimura (World Scientific, Singapore, 1999), Vol. 12, p. 229;
M.
Cho
,
Phys. Chem. Comm.
5
,
40
(
2002
).
2.
S.
Mukamel
,
A.
Piryatinski
, and
V.
Chernyak
,
Acc. Chem. Res.
32
,
145
(
1999
).
3.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
4.
K.
Park
and
M.
Cho
,
J. Chem. Phys.
109
,
10559
(
1998
).
5.
W.
Zhao
and
J. C.
Wright
,
Phys. Rev. Lett.
83
,
1950
(
1999
).
6.
W.
Zhao
and
J. C.
Wright
,
J. Am. Chem. Soc.
121
,
10994
(
1999
).
7.
(a)
W.
Zhao
and
J. C.
Wright
,
Phys. Rev. Lett.
84
,
1411
(
2000
);
(b)
W.
Zhao
,
K. M.
Murdoch
,
N. J.
Condon
et al.,
J. Lumin.
87
,
90
(
2000
);
(c)
K. M.
Murdoch
,
N. J.
Condon
,
K. M.
Murdoch
,
W.
Zhao
,
K. A.
Meyer
, and
J. C.
Wright
,
Chem. Phys. Lett.
335
,
349
(
2001
).
8.
W. M.
Zhang
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
110
,
5011
(
1999
).
9.
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
1159
(
1996
);
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
4419
(
1996
);
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
76
,
987
(
1996
).
10.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
, and
G. R.
Fleming
,
Chem. Phys. Lett.
76
,
1224
(
1996
);
A.
Tokmakoff
and
G. R.
Fleming
,
J. Chem. Phys.
106
,
2569
(
1997
);
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
);
A.
Tokmakoff
,
M. J.
lang
,
X. J.
Jordanides
, and
G. R.
Fleming
,
Chem. Phys.
233
,
231
(
1998
).
11.
X.
Hong
,
S.
Chen
, and
D. D.
Dlott
,
J. Phys. Chem.
99
,
9102
(
1995
);
L. K.
Iwaki
,
J. C.
Déak
,
S. T.
Rhea
, and
D. D.
Dlott
,
Chem. Phys. Lett.
303
,
176
(
1999
);
L. K.
Iwaki
and
D. D.
Dlott
,
Chem. Phys. Lett.
321
,
419
(
2000
);
D. D.
Dlott
,
Chem. Phys.
266
,
149
(
2001
).
12.
T.
Steffen
,
J. T.
Fourkas
, and
K.
Duppen
,
J. Chem. Phys.
105
,
7364
(
1996
);
T.
Steffen
and
K.
Duppen
,
Phys. Rev. Lett.
76
,
1224
(
1996
);
T.
Steffen
and
K.
Duppen
,
J. Chem. Phys.
106
,
3854
(
1997
).
13.
D.
Blank
,
L.
Kaufmann
, and
G.
Fleming
,
J. Chem. Phys.
113
,
771
(
2000
);
D.
Blank
,
L.
Kaufmann
, and
G.
Fleming
,
J. Chem. Phys.
114
,
2312
(
2001
).
14.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
Phys. Rev. Lett.
81
,
5326
(
1998
);
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
);
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
112
,
1907
(
2000
);
M. T.
Zanni
,
M. C.
Asplund
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
114
,
4579
(
2001
).
15.
M.
Cho
,
Phys. Rev. A
61
,
023406
(
2000
).
16.
M.
Bonn
,
Ch.
Hess
,
J. H.
Miners
,
T. F.
Heinz
,
H. J.
Bakker
, and
M.
Cho
,
Phys. Rev. Lett.
86
,
1566
(
2001
).
M.
Cho
,
Ch.
Hess
, and
M.
Bonn
,
Phys. Rev. B.
65
,
205423
(
2002
).
17.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
278
,
175
(
1997
);
M.
Cho
,
K.
Okumura
, and
Y.
Tanimura
,
J. Chem. Phys.
108
,
1326
(
1998
).
18.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
108
,
240
(
1998
).
19.
(a)
S.
Hahn
,
K.
Park
, and
M.
Cho
,
J. Chem. Phys.
111
,
4121
(
1999
);
(b)
K.
Park
,
M.
Cho
,
S.
Hahn
, and
D.
Kim
,
J. Chem. Phys.
111
,
4131
(
1999
);
(c)
M.
Cho
,
J. Chem. Phys.
111
,
4140
(
1999
);
(d)
S.
Hanh
,
K.
Kwak
, and
M.
Cho
,
J. Chem. Phys.
112
,
4553
(
1999
);
(e)
M.
Cho
,
J. Chem. Phys.
112
,
9002
(
2000
);
(f)
M.
Cho
,
J. Chem. Phys.
112
,
9978
(
2000
);
(g)
K.
Park
and
M.
Cho
,
J. Chem. Phys.
112
,
10496
(
2000
);
(h)
M.
Cho
,
J. Chem. Phys.
113
,
7746
(
2000
);
(i)
M.
Cho
,
J. Chem. Phys.
114
,
8040
(
2001
);
(j)
M.
Cho
,
J. Chem. Phys.
114
,
9982
(
2001
).
20.
C.
Scheurer
,
A.
Pirytinski
, and
S.
Mukamel
,
J. Am. Chem. Soc.
123
,
3114
(
2001
);
M.
Khalil
,
O.
Golonzka
,
N.
Demirdöve
,
C. J.
Fecko
, and
A.
Tokomakoff
,
Chem. Phys. Lett.
321
,
231
(
2000
).
21.
J. D.
Hybl
,
Y.
Christophe
, and
D. M.
Jonas
,
Chem. Phys.
262
,
295
(
2001
).
22.
J.
Sung
and
M.
Cho
,
J. Chem. Phys.
113
,
7072
(
2000
);
J.
Sung
,
R. J.
Silbey
, and
M.
Cho
,
J. Chem. Phys.
115
,
1422
(
2001
).
23.
K.
Okumura
,
D. M.
Jonas
, and
Y.
Tanimura
,
Chem. Phys.
266
,
237
(
2001
).
24.
A.
Ma
and
R. M.
Stratt
,
Phys. Rev. Lett.
85
,
1994
(
2000
).
25.
T. I. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
,
307
(
2000
).
26.
R. L.
Murry
,
J. T.
Fourkas
, and
T.
Keyes
,
J. Chem. Phys.
109
,
2814
(
1998
);
R. L.
Murry
,
J. T.
Fourkas
, and
T.
Keyes
,
J. Chem. Phys.
109
,
7913
(
1998
).
27.
M. J. Frisch, G. W. Trucks, H. B. Schegel et al., GAUSSIAN 98 (Gaussian Inc., Pittsburgh, PA, 1998).
28.
M.
Stähelin
,
C. R.
Moylan
,
D. M.
Furland
,
A.
Willetts
, and
J. E.
Rice
,
J. Chem. Phys.
98
,
5595
(
1993
).
29.
R. Loudon, The Quantum Theory of Light (Oxford, New York, 1991).
30.
Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
31.
E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover, New York, 1955).
32.
J. E.
Bertie
and
Z.
Lan
,
J. Phys. Chem. B
101
,
4111
(
1997
).
33.
J. R.
Reimers
,
J.
Zeng
, and
N. S.
Hush
,
J. Phys. Chem.
100
,
1498
(
1996
). In this paper, the authors calculated a variety of vibrational properties including first and second derivatives of CN stretching modes with the MP2 method. They also found that the MP2 method implemented in the GAUSSIAN program produces unreasonably small IR intensity for the CN stretching mode. We have privately consulted with Gaussian Inc. and notified this problem. After Gaussian Inc. carried out the same calculation with MP2/6-311++G**, they also found that the MP2/6-311++G** method is not suitable for estimating the IR intensity of the CN stretching mode.
34.
C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley, New York, 1997).
35.
M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1991).
36.
T. K.
Yee
and
T. K.
Gustafson
,
Phys. Rev. A
18
,
1597
(
1977
).
37.
D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1997).
38.
P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998).
39.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
40.
D. M.
Besemann
,
N. J.
Condon
,
K. M.
Murdoch
,
W.
Zhao
,
K. A.
Meyer
, and
J. C.
Wright
,
Chem. Phys.
266
,
177
(
2001
).
41.
M. J.
Labuda
and
J. C.
Wright
,
J. Chem. Phys.
108
,
4112
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.