Using a new theory of photoinduced electron transfer beyond the Landau–Zenner ideology or, more precisely, electrodynamics of extended multiphonon transitions [V. V. Egorov, Chem. Phys. 269, 251 (2001)], we give an explanation for the well-known experimental data [L. G. S. Brooker et al., J. Am. Chem. Soc. 62, 1116 (1940)] for the absorption line shape in the vinylogous series of an ideal polymethine dye represented by a thiacarbocyanine. Then, using this explanation together with our earlier explanation [V. V. Egorov, Chem. Phys. Lett. 336, 284 (2001)] for the nature of the well-known intense narrow J-band due to an aggregation of polymethine dyes, we predict very intense narrow absorption lines for short optical transitions. Interpretation of these results is given on a basis of the Heisenberg uncertainty relation. A process of creation of the pure (quantum-mechanical) electron-transfer state is considered for the two complementary cases: the electron-transfer state is determined by interaction of the electron with its environment through spontaneous pumping of this state by an ordered or disordered environmental motion. The latter case corresponds to the Landau–Zenner-type picture of adiabatic and nonadiabatic electron transfers. The former case is used to account for the nature of the intense narrow bands.

1.
H. Kuhn and C. Kuhn, in J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996), p. 1.
2.
The Theory of the Photographic Process, edited by T. H. James (Macmillan, New York, 1977).
3.
S.
Daehne
,
Science
199
,
1163
(
1978
).
4.
A. D.
Kachkovskii
, Usp. Khim. 66, 715 (1997) [
Russ. Chem. Rev.
66
,
647
(
1997
)].
5.
L. G. S.
Brooker
et al.,
J. Am. Chem. Soc.
62
,
1116
(
1940
).
6.
E. E.
Jelley
,
Nature (London)
138
,
1009
(
1936
).
7.
E. E.
Jelley
,
Nature (London)
139
,
631
(
1937
).
8.
G.
Scheibe
,
Angew. Chem.
49
,
563
(
1936
).
9.
G.
Scheibe
,
Angew. Chem.
50
,
212
(
1937
).
10.
V. V.
Egorov
,
Chem. Phys. Lett.
336
,
284
(
2001
).
11.
V. V.
Egorov
,
Chem. Phys.
269
,
251
(
2001
).
12.
A. H.
Herz
,
Photograph. Sci. Eng.
18
,
323
(
1974
).
13.
A. H.
Herz
,
Photograph. Sci. Eng.
18
,
667
(E) (
1974
).
14.
A. H.
Herz
,
Adv. Colloid Interface Sci.
8
,
237
(
1977
).
15.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
16.
C. C.
Moser
,
J. M.
Keske
,
K.
Warncke
,
R. S.
Farid
, and
P. L.
Dutton
,
Nature (London)
355
,
796
(
1992
).
17.
P. J.
Rossky
and
J. D.
Simon
,
Nature (London)
370
,
263
(
1994
).
18.
A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology (Gordon and Breach Science, New York, 1995).
19.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
20.
L. D.
Landau
,
Sov. Phys.
1
,
89
(
1932
).
21.
L. D.
Landau
,
Sov. Phys.
2
,
46
(
1932
).
22.
C.
Zenner
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
23.
C.
Zenner
,
Proc. R. Soc. London, Ser. A
140
,
660
(
1933
).
24.
K. F. Purcell and B. Blaive, in Photoinduced Electron Transfer, Vol. A, edited by M. A. Fox and M. Chanon (Elsevier, Amsterdam, 1988), p. 123.
25.
M. D.
Frank-Kamenetskii
and
A. V.
Lukashin
, Usp. Fiz. Nauk 116, 193 (1975) [
Sov. Phys. Usp.
18
,
391
(
1975
)].
26.
Yu. E.
Perlin
, Usp. Fiz. Nauk 80, 553 (1963) [
Sov. Phys. Usp.
6
,
542
(
1964
)].
27.
V. V.
Egorov
, Khim. Fizika 7, 1466 (1988) [
Sov. J. Chem. Phys.
7
,
2629
(
1991
)].
28.
V. V.
Egorov
,
THEOCHEM
398–399
,
121
(
1997
).
29.
V. V.
Egorov
,
Chimia
51
,
554
(
1997
).
30.
V. V.
Egorov
,
Russ. J. Phys. Chem.
64
,
1245
(
1990
).
31.
V. V.
Egorov
,
Thin Solid Films
284–285
,
932
(
1996
).
32.
V. V.
Egorov
,
Thin Solid Films
299
,
190
(E) (
1997
).
33.
J. N.
Brönsted
,
Chem. Rev.
5
,
231
(
1928
).
34.
K.
Naito
and
A.
Miura
,
J. Am. Chem. Soc.
115
,
5185
(
1993
).
35.
M. A.
Krivoglaz
and
S. I.
Pekar
,
Trudy Inst. Fiz. Akad. Nauk Ukr. SSR (Trans. Inst. Phys. Acad. Sci. Ukr. SSR)
4
,
37
(
1953
).
36.
M. A.
Krivoglaz
, Zh. Eksp. Teor. Fiz.
Sov. Phys. JETP
25
,
191
(
1953
).
37.
R.
Feynman
,
Phys. Rev.
84
,
108
(
1951
).
38.
M.
Lax
,
J. Chem. Phys.
20
,
1752
(
1952
).
39.
R.
Kubo
,
Phys. Rev.
86
,
929
(
1952
).
40.
R.
Kubo
and
Y.
Toyozawa
,
Prog. Theor. Phys.
13
,
160
(
1955
).
41.
S. I.
Pekar
, Zh. Eksp. Teor. Fiz.
Sov. Phys. JETP
22
,
641
(
1952
).
42.
S. I.
Pekar
, Usp. Fiz. Nauk
Sov. Phys. Usp.
50
,
197
(
1953
).
43.
The perturbation operator V in Eq. (4) is taken in the usual long-wave approximation: V=p, where p is the momentum operator of the electron localized in the final state.
44.
E.
Fermi
,
Ric. Sci.
7
,
13
(
1936
).
45.
V. V. Egorov, Abstract Books: Second All-Russian Conference on Molecular Simulation, Moscow, Russia, April 24–26, 2001 (Russian Academy of Sciences, Moscow, Russia, 2001) p. 26;
International Conference on Dynamical Processes in Excited States of Solids, Lyon, France, July 1–4, 2001 (University of Claude Bernard Lyon 1, Villeurbanne, France, 2001);
XX International Conference on Photochemistry, Moscow, Russia, July 30–August 4, 2001 (Russian Academy of Sciences, Photochemistry Center, Moscow, Russia, 2001) p. 232;
10th International Conference on Unconventional Photoactive Systems, Les Diablerets, Switzerland, September 4–8, 2001 (Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2001).
46.
F. Dietz, J. Signal AM 6, 245;
337 (1978).
47.
M.
Iwasaki
,
K.
Higashinaka
, and
T.
Tanaka
,
J. Soc. Sci. Photogr. Jpn.
58
,
361
(
1995
).
48.
S. Flügge, Practical Quantum Mechanics I (Springer-Verlag, Berlin, 1971).
49.
With no intermediate bridge states.
50.
Characteristic times τe=R(2J1/m)−1/2,τ=ℏ/E, and τ0=ℏ/γ, along with the other characteristic parameters of the system, appear naturally in the original theory (Ref. 11) during the progress of the formal deduction of the electron-transfer result for the optical absorption line shape [see Eqs. (678)]. For the physical interpretations in the present paper, we thus are entitled to treat the equations for the characteristic times as though they follow from general considerations.
51.
D. F. Calef, in Photoinduced Electron Transfer, Vol. A, edited by M. A. Fox and M. Chanon (Elsevier, Amsterdam, 1988), p. 362.
52.
A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, Scattering, Reactions and Decays in Nonrelativistical Quantum Mechanics (Nauka, Moscow, 1971) (in Russian).
53.
V. I. Goldanskii, L. I. Trakhtenberg, and V. N. Fleurov, Tunnel Phenomena in Chemical Physics (Nauka, Moscow, 1986) (in Russian).
54.
R.
Kubo
,
Adv. Chem. Phys.
15
,
101
(
1969
).
55.
Motional narrowing: for smaller correlation times between the amplitudes of the environmental stochastic fluctuations each realization of the stochastic process averages more effectively over the evolution of the phase of the molecular transition dipole (see Refs. 56 and 57).
56.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
57.
M.
Wubs
and
J.
Knoester
,
Chem. Phys. Lett.
284
,
63
(
1998
).
58.
T.
Holstein
,
Philos. Mag. B
37
,
49
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.