The organization of the lipid headgroups in a neutral model membrane is studied by atomistic simulations in the fluid lamellar phase, Lα. In particular, we report the results obtained for a fully hydrated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine lipid bilayer at room temperature. The orientational distribution of the lipid dipole moments with respect to the membrane normal presents a maximum at 70° (20° above the plane of the interface, pointing toward the water region). We also found another smaller peak at 110° (−20° with respect to the membrane plane). This preferential orientation of the lipid headgroup dipoles with respect to the bilayer normal obtained at 303 K is qualitatively different from previous calculations at higher temperatures in the fluid lamellar phase, where headgroup dipoles were uniformly distributed with orientations spanning 0°–135°. Despite their differences, both situations give rise to a similar mean orientation of ∼70°, which is in excellent agreement with experiment. The statistics of the main lipid–lipid interactions, the charge density profiles, the electrostatic potential along the bilayer normal, and the polarization of water molecules at the interfacial plane are also analyzed.

1.
R. Lipowsky and E. Sackmann, Eds., Structure and Dynamics of Membranes, in Handbook of Biological Physics, Vol. 1 (Elsevier, Amsterdam, 1995).
2.
W. M.
Gelbart
,
R. F.
Bruinsma
,
P. A.
Pincus
, and
V. A.
Parsegian
,
Phys. Today
53
,
38
(
2000
).
3.
K.
Gawrisch
,
D.
Ruston
,
J.
Zimmemberg
,
V. A.
Parsegian
,
R. P.
Rand
, and
N.
Fuller
,
Biophys. J.
61
,
1213
(
1992
).
4.
L.
Saiz
and
M. L.
Klein
,
Biophys. J.
81
,
204
(
2001
).
5.
M.
Pasenkiewicz-Gierula
,
Y.
Takaoka
,
H.
Miyagawa
,
K.
Kitamura
, and
A.
Kusumi
,
Biophys. J.
76
,
1228
(
1999
).
6.
J.
Seelig
,
P. M.
Macdonald
, and
P. G.
Scherer
,
Biochemistry
26
,
7535
(
1987
).
7.
P. G.
Scherer
and
J.
Seelig
,
Biochemistry
28
,
7720
(
1989
);
H. U.
Gally
,
W.
Niederberger
, and
J.
Seelig
,
Biochemistry
14
,
3647
(
1975
);
H.
Akutsu
and
T.
Nagamori
,
Biochemistry
30
,
4510
(
1991
).
8.
J. A.
Barry
,
T. P.
Trouard
,
A.
Salmon
, and
M. F.
Brown
,
Biochemistry
30
,
8386
(
1991
).
9.
J.
Hamilton
,
R.
Greiner
,
N.
Salem
, and
H. Y.
Kim
,
Lipids
35
,
863
(
2000
), and references therein.
10.
L.
Saiz
and
M. L.
Klein
,
J. Am. Chem. Soc.
123
,
7381
(
2001
).
11.
B. J.
Litman
and
D. C.
Mitchell
,
Lipids
31
,
s193
(
1996
).
12.
M. F.
Brown
,
Chem. Phys. Lipids
73
,
159
(
1994
).
13.
M.
Bloom
,
Biol. Skr. Dan. Vid. Selsk.
49
,
13
(
1998
).
14.
K.
Palczewski
,
T.
Kumasaka
,
T.
Hori
et al.,
Science
289
,
739
(
2000
).
15.
M. E.
Tuckerman
,
D. A.
Yarne
,
S. O.
Samuelson
,
A. L.
Hughes
, and
G. J.
Martyna
,
Comput. Phys. Commun.
128
,
333
(
2000
).
16.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
17.
M. Schlenkrich, J. Brickmann, A. D. MacKerell, Jr., and M. Karplus, in Biological Membranes: A Molecular Perspective from Computation and Experiment, edited by K. M. Merz and B. Roux (Birkhauser, Boston, 1996);
S. E.
Feller
and
A. D.
MacKerell
, Jr.
,
J. Phys. Chem. B
104
,
7510
(
2000
).
18.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
19.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, London, 1996).
20.
K. C.
Tu
,
D. J.
Tobias
, and
M. L.
Klein
,
Biophys. J.
69
,
2558
(
1995
).
21.
U.
Essmann
and
M. L.
Berkowitz
,
Biophys. J.
76
,
2081
(
1999
).
22.
D. M. Small, The Physical Chemistry of Lipids: From Alkanes to Phospholipids, in Handbook of Lipid Research, Vol. 4 (Plenum, New York, 1986).
23.
L. Saiz, S. Bandyopadhyay, and M. L. Klein, preprint (2001).
24.
M. T.
Hyvönen
,
T. T.
Rantala
, and
M.
Ala-Korpela
,
Biophys. J.
73
,
2907
(
1997
).
25.
T.
Husslein
,
D. M.
News
,
P. C.
Pattnaik
,
Q. F.
Zhong
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
2826
(
1998
).
26.
S.
Bandyopadhyay
,
J. C.
Shelley
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
5979
(
2001
).
27.
In previous computer simulations at room temperature in the fluid lamellar phase (Refs. 24 and 25), the P(φ) distributions were normalized in such a way that a uniform distribution of the headgroup dipoles in a (three-dimensional) sphere corresponds to a sin(φ) function. Consequently, this is the first work (and later also in Ref. 26) where the P(φ) distribution is properly normalized at room temperature, so the deviations from the almost uniform distribution observed at higher temperatures are evident.
28.
K. C.
Tu
,
D. J.
Tobias
,
J. K.
Blasie
, and
M. L.
Klein
,
Biophys. J.
70
,
595
(
1996
).
29.
A. M.
Smondyrev
and
M. L.
Berkowitz
,
Biophys. J.
76
,
2472
(
1999
).
30.
J. A.
Lundæ
,
A. M.
Maer
, and
O. S.
Andersen
,
Biochemistry
36
,
5695
(
1997
);
J. A.
Lundbæ
,
P.
Birn
,
J.
Girshman
,
A. J.
Hansen
, and
O. S.
Andersen
,
Biochemistry
35
,
3825
(
1996
).
31.
R. S.
Cantor
,
J. Phys. Chem. B
101
,
1723
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.