A recently developed microscopic model for associating fluids that accurately captures the thermodynamics of liquid water [Truskett et al., J. Chem. Phys. 111, 2647 (1999)] is extended to aqueous solutions with nonpolar species. The underlying association model incorporates the highly directional and open nature of water’s hydrogen-bond network, and, as a result, captures a number of the distinguishing properties of liquid water, such as the density anomaly. The model for aqueous mixtures developed herein predicts many of the thermodynamic signatures of hydrophobic hydration without resorting to empirical temperature-dependent parameters. The predicted solubility of nonpolar species is slight over a wide range of temperatures, and exhibits a minimum as a function of temperature, in accord with experiment. Hydration is opposed by a dominant entropy and favored by the enthalpy at low temperatures. At elevated temperatures these roles are reversed. Furthermore, the hydration entropies for hydrophobes of varying size converge over a very narrow temperature range. Comparison with experimental and simulation data for nonpolar solutes in water shows that the theory tends to exaggerate the solute’s transfer heat capacity at low temperature, and hence solubility minima and entropy convergence are predicted to occur at lower temperatures than observed. Our results support the emerging view that hydrophobic effects can be attributed in large part to the equation of state for pure water.

1.
C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. (Wiley, New York, 1980).
2.
W.
Kauzmann
,
Adv. Protein Chem.
14
,
1
(
1959
).
3.
W.
Blokzijl
and
J. B. F. N.
Engberts
,
Angew. Chem. Int. Ed. Engl.
32
,
1545
(
1993
).
4.
J. F.
Brandts
,
J. Am. Chem. Soc.
86
,
4291
(
1964
).
5.
F.
Franks
and
R. H. M.
Hatley
,
Pure Appl. Chem.
63
,
1367
(
1991
).
6.
L. J.
Chen
,
S. Y.
Lin
, and
C. C.
Huang
,
J. Phys. Chem. B
102
,
4350
(
1998
).
7.
L. J.
Chen
,
S. Y.
Lin
,
C. C.
Huang
, and
E. M.
Chen
,
Colloids Surf., A
135
,
175
(
1998
).
8.
P. L.
Privalov
,
Adv. Protein Chem.
33
,
167
(
1979
).
9.
R. L.
Baldwin
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
8069
(
1986
).
10.
P. L.
Privalov
and
S. J.
Gill
,
Adv. Protein Chem.
39
,
191
(
1988
).
11.
K. P.
Murphy
,
P. L.
Privalov
, and
S. J.
Gill
,
Science
247
,
559
(
1990
).
12.
G. I.
Makhatadze
and
P. L.
Privalov
,
Adv. Protein Chem.
47
,
307
(
1995
).
13.
B.
Lee
,
Proc. Natl. Acad. Sci. U.S.A.
88
,
5154
(
1991
).
14.
N.
Muller
,
Biopolymers
33
,
1185
(
1993
).
15.
H. S.
Frank
and
M. W.
Evans
,
J. Chem. Phys.
13
,
507
(
1945
).
16.
R. D.
Broadbent
and
G. W.
Neilson
,
J. Chem. Phys.
100
,
7543
(
1994
).
17.
P. H. K.
DeJong
,
J. E.
Wilson
,
G. W.
Neilson
, and
A. D.
Buckingham
,
Mol. Phys.
91
,
99
(
1997
).
18.
A.
Filipponi
,
D. T.
Bowron
,
C.
Lobban
, and
J. L.
Finney
,
Phys. Rev. Lett.
79
,
1293
(
1997
).
19.
D. T.
Bowron
,
A.
Filipponi
,
C.
Lobban
, and
J. L.
Finney
,
Chem. Phys. Lett.
293
,
33
(
1998
).
20.
D. T.
Bowron
,
A.
Filipponi
,
M. A.
Roberts
, and
J. L.
Finney
,
Phys. Rev. Lett.
81
,
4164
(
1998
).
21.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
22.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
J. Phys. Chem.
100
,
1900
(
1996
).
23.
H. S.
Ashbaugh
,
E. W.
Kaler
, and
M. E.
Paulaitis
,
J. Am. Chem. Soc.
121
,
9243
(
1999
).
24.
H. S.
Ashbaugh
,
S.
Garde
,
G.
Hummer
,
E. W.
Kaler
, and
M. E.
Paulaitis
,
Biophys. J.
77
,
645
(
1999
).
25.
J. R.
Errington
,
G. C.
Boulougouris
,
I. G.
Economou
,
A. Z.
Panagiotopoulos
, and
D. N.
Theodorou
,
J. Phys. Chem. B
102
,
8865
(
1998
).
26.
S.
Garde
,
G.
Hummer
,
A. E.
Garcı́a
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
Phys. Rev. Lett.
77
,
4966
(
1996
).
27.
S.
Garde
,
A. E.
Garcı́a
,
L. R.
Pratt
, and
G.
Hummer
,
Biophys. Chem.
78
,
21
(
1999
).
28.
G.
Hummer
,
S.
Garde
,
A. E.
Garcı́a
,
A.
Pohorille
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
8951
(
1996
).
29.
G.
Hummer
,
S.
Garde
,
A. E.
Garcı́a
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
J. Phys. Chem. B
102
,
10469
(
1998
).
30.
G.
Hummer
,
S.
Garde
,
A. E.
Garcı́a
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
1552
(
1998
).
31.
G.
Hummer
,
S.
Garde
,
A. E.
Garcı́a
, and
L. R.
Pratt
,
Chem. Phys.
258
,
349
(
2000
).
32.
S.
Garde
and
H. S.
Ashbaugh
,
J. Chem. Phys.
115
,
977
(
2001
).
33.
D. E.
Smith
and
A. D. J.
Haymet
,
J. Chem. Phys.
98
,
6445
(
1993
).
34.
D. E.
Smith
,
L.
Zhang
, and
A. D. J.
Haymet
,
J. Am. Chem. Soc.
114
,
5875
(
1992
).
35.
B.
Guillot
and
Y.
Guissani
,
J. Chem. Phys.
99
,
8075
(
1993
).
36.
B.
Guillot
and
Y.
Guissani
,
Mol. Phys.
79
,
53
(
1993
).
37.
Y. K.
Cheng
and
P. J.
Rossky
,
Nature (London)
392
,
696
(
1998
).
38.
S.
Lüdemann
,
H.
Schreiber
,
R.
Abseher
, and
O.
Steinhauser
,
J. Chem. Phys.
104
,
286
(
1996
).
39.
S.
Lüdemann
,
R.
Abseher
,
H.
Schreiber
, and
O.
Steinhauser
,
J. Am. Chem. Soc.
119
,
4206
(
1997
).
40.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
41.
T. M.
Truskett
,
P. G.
Debenedetti
, and
S.
Torquato
,
J. Chem. Phys.
114
,
2401
(
2001
).
42.
T. Lazaridis, Acc. Chem. Res. (to be published).
43.
H.
Reiss
,
Adv. Chem. Phys.
9
,
1
(
1965
).
44.
R. A.
Pierotti
,
J. Phys. Chem.
67
,
1840
(
1963
).
45.
F. H.
Stillinger
,
J. Solution Chem.
2
,
141
(
1973
).
46.
A.
Pohorille
and
L. R.
Pratt
,
J. Am. Chem. Soc.
112
,
5056
(
1990
).
47.
L. R.
Pratt
and
A.
Pohorille
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
2995
(
1992
).
48.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
J. Am. Chem. Soc.
123
,
10721
(
2001
).
49.
T.
Lazaridis
and
M. E.
Paulaitis
,
J. Phys. Chem.
96
,
3847
(
1992
).
50.
T.
Lazaridis
and
M. E.
Paulaitis
,
J. Phys. Chem.
98
,
635
(
1994
).
51.
K. A. T.
Silverstein
,
K. A.
Dill
, and
A. D. J.
Haymet
,
J. Chem. Phys.
114
,
6303
(
2001
).
52.
L. R.
Pratt
and
D.
Chandler
,
J. Chem. Phys.
67
,
3683
(
1977
).
53.
D.
Chandler
,
Phys. Rev. E
48
,
2898
(
1993
).
54.
I. G.
Economou
and
M. D.
Donohue
,
Ind. Eng. Chem. Res.
31
,
2388
(
1992
).
55.
I. G.
Economou
and
C.
Tsonopoulos
,
Chem. Eng. Sci.
52
,
511
(
1997
).
56.
J. Z.
Wu
and
J. M.
Prausnitz
,
Ind. Eng. Chem. Res.
37
,
1634
(
1998
).
57.
T. M.
Truskett
,
P. G.
Debenedetti
,
S.
Sastry
, and
S.
Torquato
,
J. Chem. Phys.
111
,
2647
(
1999
).
58.
D. M.
Huang
and
D.
Chandler
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8324
(
2000
).
59.
C. P. C.
Kao
,
M. E. P.
Defernandez
, and
M. E.
Paulaitis
,
ACS Symp. Ser.
514
,
74
(
1993
).
60.
P. H.
Poole
,
F.
Sciortino
,
T.
Grande
,
H. E.
Stanley
, and
C. A.
Angell
,
Phys. Rev. Lett.
73
,
1632
(
1994
).
61.
C. A.
Jeffery
and
P. H.
Austin
,
J. Chem. Phys.
110
,
484
(
1999
).
62.
I.
Nezbeda
,
Fluid Phase Equilib.
170
,
13
(
2000
).
63.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
64.
N.
Matubayasi
,
L. H.
Reed
, and
R. M.
Levy
,
J. Phys. Chem.
98
,
10640
(
1994
).
65.
T.
Lazaridis
,
J. Phys. Chem. B
104
,
4964
(
2000
).
66.
G. L.
Pollack
,
Science
251
,
1323
(
1991
).
67.
P. H.
Poole
,
F.
Sciortino
,
U.
Essman
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
68.
S. H.
Harrington
,
R.
Zhang
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
78
,
2409
(
1997
).
69.
H.
Tanaka
,
Nature (London)
380
,
328
(
1996
).
70.
C. J.
Roberts
and
P. G.
Debenedetti
,
J. Chem. Phys.
105
,
658
(
1996
).
71.
C. J.
Roberts
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Phys. Rev. Lett.
77
,
4386
(
1996
).
72.
O.
Mishima
and
H. E.
Stanley
,
Nature (London)
392
,
164
(
1998
).
73.
M. R.
Sadr-Lahijany
,
A.
Scala
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. Lett.
81
,
4895
(
1998
).
74.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
93
,
25
(
1990
).
75.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
93
,
6954
(
1990
).
76.
S. I. Sandler, Chemical and Engineering Thermodynamics, 2nd ed. (Wiley, New York, 1989).
77.
T. R.
Rettich
,
Y. P.
Handa
,
R.
Battino
, and
E.
Wilhelm
,
J. Phys. Chem.
85
,
3230
(
1981
).
78.
R.
Crovetto
,
R.
Fernandez-Prini
, and
M. L.
Japas
,
J. Chem. Phys.
76
,
1077
(
1982
).
79.
R.
Fernandez-Prini
,
R.
Crovetto
,
M. L.
Japas
, and
D.
Laria
,
Acc. Chem. Res.
18
,
207
(
1985
).
80.
S. J.
Gill
,
S. F.
Dec
,
G.
Ololfsson
, and
I.
Wadsö
,
J. Phys. Chem.
89
,
3758
(
1985
).
81.
D. R.
Biggerstaff
,
D. E.
White
, and
R. H.
Wood
,
J. Phys. Chem.
89
,
4378
(
1985
).
82.
J. W.
Arthur
and
A. D. J.
Haymet
,
J. Chem. Phys.
110
,
5873
(
1999
).
83.
K. A. T.
Silverstein
,
A. D. J.
Haymet
, and
K. A.
Dill
,
J. Am. Chem. Soc.
122
,
8037
(
2000
).
84.
T. R.
Rettich
,
Y. P.
Handa
,
R.
Battino
, and
E.
Wilhelm
,
J. Phys. Chem.
85
,
3230
(
1981
).
85.
Solubility Data Series, edited by H. Lawrence Clever (Pergamon, Oxford, 1980), Vol. 4.
86.
S. Garde (personal communication).
87.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature (London)
409
,
318
(
2001
).
88.
S.
Sastry
,
Nature (London)
409
,
300
(
2001
).
89.
I.
Nezbeda
and
U.
Weingerl
,
Mol. Phys.
99
,
1595
(
2001
).
90.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
84
,
5085
(
1986
).
91.
R. M. Felder and R. W. Rousseau, Elementary Principles of Chemical Processes, 2nd ed. (Wiley, New York, 1986).
92.
T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics: Thermodynamic and Transport Properties of Fluids (McGraw–Hill, New York, 1973).
This content is only available via PDF.
You do not currently have access to this content.