Protonated ammonia clusters of the composition (NxH3x+1)+ with x=2,3,4 are investigated by using the gradient corrected, three-parameter functional by Becke based on the functional by Lee, Yang, and Parr (B3LYP/6-31G**) and self-consistent charges density functional tight-binding (SCC–DFTB) methods for calculating the potential energy surface and forces in the Born–Oppenheimer approximation. They are used for classical molecular dynamics simulations at temperatures ranging from 5 K to 600 K. Results from the two methods are compared for proton transfer in N2H7+. The number of proton transfer events as a function of temperature is similar, although at low temperatures, SCC–DFTB cuts off more rapidly than B3LYP/6-31G**. Calculated vibrational spectra agree well for the intermolecular N–N and intramolecular N–H stretch excitations. Both approaches lead to broad, relatively unstructured bands extending over about 1500 cm−1 for the proton transfer coordinate. Simulations at the SCC–DFTB/MD level for larger (NxH3x+1)+(x⩽4) clusters are presented and discussed. They show significant structural reorganization within the cluster. Consecutive proton hops within a few tenths of a fs are observed. A N2H7+ cluster immersed in a water shell containing 25 water molecules was studied by the mixed quantum mechanical/molecular mechanics (QM/MM) method with SCC–DFTB for the QM part. The presence of water appears to impede proton transfer. Including corrections for basis set superposition error in the MP2/aug-cc-pVTZ and B3LYP/6-31G** calculations has a small effect. It increases the barrier heights from 0.78 kcal/mol to 1.28 kcal/mol (MP2) and from 0.10 kcal/mol to 0.27 kcal/mol (B3LYP), respectively.

1.
J. F.
Nagle
and
H. J.
Morowitz
,
Proc. Natl. Acad. Sci. U.S.A.
298
,
75
(
1978
).
2.
W.
Humphrey
,
H.
Lu
,
I.
Logunov
,
H.-J.
Werner
, and
K.
Schulten
,
Biophys. J.
75
,
1689
(
1998
).
3.
J.
Lanyi
,
J. Biol. Chem.
272
,
31209
(
1997
).
4.
J.
Baudry
,
S.
Crouzy
,
B.
Roux
, and
J. C.
Smith
,
Biophys. J.
76
,
1909
(
1999
).
5.
M.
Eigen
,
Angew. Chem. Int. Ed. Engl.
3
,
1
(
1964
).
6.
L. Stryer, Biochemistry (W. H. Freeman, New York, 1988).
7.
J.
Tandori
,
P.
Sebban
,
H.
Michel
, and
L.
Baciou
,
Biochemistry
38
,
13179
(
1999
).
8.
H.
Michel
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
12819
(
1998
).
9.
R. B.
Gennis
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
12747
(
1998
).
10.
E.
Nabedryk
,
J.
Brenton
,
M. Y.
Okamura
, and
M. L.
Paddock
,
Biochemistry
37
,
14457
(
1998
).
11.
L.
Jaroszewski
,
B.
Lesyng
,
J. T.
Tanner
, and
J. A.
McCammon
,
Chem. Phys. Lett.
175
,
282
(
1990
).
12.
H.-H.
Bueker
,
T.
Helgaker
,
K.
Ruud
, and
E.
Uggerud
,
J. Phys. Chem.
100
,
15388
(
1996
).
13.
D.
Wei
and
D. R.
Salahub
,
J. Chem. Phys.
106
,
6086
(
1997
).
14.
D. E.
Sagnella
and
M. E.
Tuckerman
,
J. Chem. Phys.
108
,
2073
(
1998
).
15.
R.
Vuilleumier
and
D.
Borgis
,
J. Chem. Phys.
111
,
4251
(
1999
).
16.
M. V.
Vener
,
O.
Kühn
, and
J.
Sauer
,
J. Chem. Phys.
114
,
240
(
2001
).
17.
N.
Agmon
,
Chem. Phys. Lett.
244
,
456
(
1995
).
18.
R.
Pomes
and
B.
Roux
,
J. Phys. Chem.
100
,
2519
(
1996
).
19.
H.-P.
Cheng
,
J. Chem. Phys.
105
,
6844
(
1996
).
20.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
Science
275
,
817
(
1997
).
21.
T. J. F.
Day
,
U. W.
Schmitt
, and
G. A.
Voth
,
J. Am. Chem. Soc.
122
,
12027
(
2000
).
22.
P. L.
Geissler
,
C.
Dellago
,
D.
Chandler
,
J.
Hutter
, and
M.
Parrinello
,
Chem. Phys. Lett.
321
,
225
(
2000
).
23.
H. S.
Mei
,
M. E.
Tuckerman
,
D. E.
Sagnella
, and
M. L.
Klein
,
J. Phys. Chem. B
102
,
10446
(
1998
).
24.
Y.
Liu
and
M. E.
Tuckerman
,
J. Phys. Chem. B
105
,
6598
(
2001
).
25.
R. R.
Sadeghi
and
H.-P.
Cheng
,
J. Chem. Phys.
111
,
2086
(
1999
).
26.
J.
Baudry
,
E.
Tajkhorshid
,
F.
Molnar
,
J.
Philipps
, and
K.
Schulten
,
J. Phys. Chem. B
105
,
905
(
2001
).
27.
M.
Head-Gordon
,
J. Phys. Chem.
100
,
13213
(
1996
).
28.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
29.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
30.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
31.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
32.
A.
Warshel
and
M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
).
33.
P.
Grochowski
,
B.
Lesyng
,
P.
Bala
, and
J. A.
McCammon
,
Int. J. Quantum Chem.
60
,
1143
(
1996
).
34.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
35.
A.
Bach
and
S.
Leutwyler
,
J. Chem. Phys.
112
,
560
(
2000
).
36.
S.
Coussan
,
M.
Meuwly
, and
S.
Leutwyler
,
J. Chem. Phys.
114
,
3524
(
2001
).
37.
M.
Meuwly
,
A.
Bach
, and
S.
Leutwyler
,
J. Am. Chem. Soc.
123
,
11446
(
2001
).
38.
B.
Hartke
and
E. A.
Carter
,
Chem. Phys. Lett.
189
,
358
(
1992
).
39.
C.
Lee
,
R.
Yang
, and
W. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
40.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
41.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
42.
R. A.
Kendall
, Jr.
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
43.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 94, Revision e.2, Gaussian, Inc., Pittsburgh, PA, 1995.
44.
Q.
Cui
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
,
J. Phys. Chem. B
105
,
569
(
2001
).
45.
S.
Sadhukhan
,
D.
Munoz
,
C.
Adamo
, and
G. E.
Scuseria
,
Chem. Phys. Lett.
306
,
83
(
1999
).
46.
M.
Pavese
,
S.
Chawla
,
D.
Lu
,
J.
Lobaugh
, and
G. A.
Voth
,
J. Chem. Phys.
107
,
7428
(
1997
).
47.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
48.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
49.
P. D.
Lyne
,
M.
Hodoscek
, and
M.
Karplus
,
J. Phys. Chem. A
103
,
3462
(
1999
).
50.
W. V.
Van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Phys.
34
,
311
(
1977
).
51.
W. L.
Jorgensen
,
J. D.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
52.
E.
Helfand
,
J. Chem. Phys.
69
,
1010
(
1978
).
53.
R. W.
Pastor
and
M.
Karplus
,
J. Chem. Phys.
91
,
211
(
1989
).
54.
J. M.
Price
,
M. W.
Crofton
, and
Y. T.
Lee
,
J. Phys. Chem.
95
,
2182
(
1991
).
55.
K.
Hirao
,
T.
Fujikawa
,
H.
Konishi
, and
S.
Yamabe
,
Chem. Phys. Lett.
104
,
184
(
1984
).
56.
M.
Ichihashi
,
J.
Yamabe
,
K.
Murai
,
S.
Nonose
,
K.
Hirao
, and
T.
Kondow
,
J. Phys. Chem.
100
,
10050
(
1996
).
57.
W. B.
Bosma
,
L. E.
Fried
, and
S.
Mukamel
,
J. Chem. Phys.
98
,
4413
(
1993
).
58.
J. D.
Payzant
,
A. J.
Cunningham
, and
P.
Kebarle
,
Can. J. Chem.
51
,
3252
(
1973
).
59.
A.
Staib
,
D.
Borgis
, and
J. T.
Hynes
,
J. Chem. Phys.
102
,
2487
(
1995
).
60.
P. L.
Geissler
,
C.
Dellago
,
D.
Chandler
,
J.
Hutter
, and
M.
Parrinello
,
Science
291
,
2121
(
2001
).
61.
G. E.
Walrafen
,
M. R.
Fisher
,
M. S.
Hokmabadi
, and
W.-H.
Yang
,
J. Chem. Phys.
85
,
6970
(
1986
).
62.
E. W.
Castner
, Jr.
,
Y. J.
Chang
,
Y. C.
Chu
, and
G. E.
Walrafen
,
J. Chem. Phys.
102
,
653
(
1995
).
63.
C. J.
Montrose
,
J. A.
Bucaro
,
J.
Marschall-Coakley
, and
T. A.
Litovitz
,
J. Chem. Phys.
60
,
5025
(
1974
).
64.
M.-C.
Bellissent-Funel
and
J.
Teixeira
,
J. Mol. Struct.
250
,
5025
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.